184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438 | class RayTaskRunner(TaskRunner[PrefectRayFuture]):
"""
A parallel task_runner that submits tasks to `ray`.
By default, a temporary Ray cluster is created for the duration of the flow run.
Alternatively, if you already have a `ray` instance running, you can provide
the connection URL via the `address` kwarg.
Args:
address (string, optional): Address of a currently running `ray` instance; if
one is not provided, a temporary instance will be created.
init_kwargs (dict, optional): Additional kwargs to use when calling `ray.init`.
Examples:
Using a temporary local ray cluster:
```python
from prefect import flow
from prefect_ray.task_runners import RayTaskRunner
@flow(task_runner=RayTaskRunner())
def my_flow():
...
```
Connecting to an existing ray instance:
```python
RayTaskRunner(address="ray://192.0.2.255:8786")
```
"""
def __init__(
self,
address: Optional[str] = None,
init_kwargs: Optional[Dict] = None,
):
# Store settings
self.address = address
self.init_kwargs = init_kwargs.copy() if init_kwargs else {}
self.init_kwargs.setdefault("namespace", "prefect")
# Runtime attributes
self._ray_context = None
super().__init__()
def duplicate(self):
"""
Return a new instance of with the same settings as this one.
"""
return type(self)(address=self.address, init_kwargs=self.init_kwargs)
def __eq__(self, other: object) -> bool:
"""
Check if an instance has the same settings as this task runner.
"""
if isinstance(other, RayTaskRunner):
return (
self.address == other.address and self.init_kwargs == other.init_kwargs
)
else:
return False
@overload
def submit(
self,
task: "Task[P, Coroutine[Any, Any, R]]",
parameters: Dict[str, Any],
wait_for: Optional[Iterable[PrefectFuture]] = None,
dependencies: Optional[Dict[str, Set[TaskRunInput]]] = None,
) -> PrefectRayFuture[R]:
...
@overload
def submit(
self,
task: "Task[Any, R]",
parameters: Dict[str, Any],
wait_for: Optional[Iterable[PrefectFuture]] = None,
dependencies: Optional[Dict[str, Set[TaskRunInput]]] = None,
) -> PrefectRayFuture[R]:
...
def submit(
self,
task: Task,
parameters: Dict[str, Any],
wait_for: Optional[Iterable[PrefectFuture]] = None,
dependencies: Optional[Dict[str, Set[TaskRunInput]]] = None,
):
if not self._started:
raise RuntimeError(
"The task runner must be started before submitting work."
)
parameters, upstream_ray_obj_refs = self._exchange_prefect_for_ray_futures(
parameters
)
task_run_id = uuid4()
context = serialize_context()
remote_options = RemoteOptionsContext.get().current_remote_options
if remote_options:
ray_decorator = ray.remote(**remote_options)
else:
ray_decorator = ray.remote
object_ref = (
ray_decorator(self._run_prefect_task)
.options(name=task.name)
.remote(
*upstream_ray_obj_refs,
task=task,
task_run_id=task_run_id,
parameters=parameters,
wait_for=wait_for,
dependencies=dependencies,
context=context,
)
)
return PrefectRayFuture(task_run_id=task_run_id, wrapped_future=object_ref)
@overload
def map(
self,
task: "Task[P, Coroutine[Any, Any, R]]",
parameters: Dict[str, Any],
wait_for: Optional[Iterable[PrefectFuture]] = None,
) -> PrefectFutureList[PrefectRayFuture[R]]:
...
@overload
def map(
self,
task: "Task[Any, R]",
parameters: Dict[str, Any],
wait_for: Optional[Iterable[PrefectFuture]] = None,
) -> PrefectFutureList[PrefectRayFuture[R]]:
...
def map(
self,
task: "Task",
parameters: Dict[str, Any],
wait_for: Optional[Iterable[PrefectFuture]] = None,
):
return super().map(task, parameters, wait_for)
def _exchange_prefect_for_ray_futures(self, kwargs_prefect_futures):
"""Exchanges Prefect futures for Ray futures."""
upstream_ray_obj_refs = []
def exchange_prefect_for_ray_future(expr):
"""Exchanges Prefect future for Ray future."""
if isinstance(expr, PrefectRayFuture):
ray_future = expr.wrapped_future
upstream_ray_obj_refs.append(ray_future)
return ray_future
return expr
kwargs_ray_futures = visit_collection(
kwargs_prefect_futures,
visit_fn=exchange_prefect_for_ray_future,
return_data=True,
)
return kwargs_ray_futures, upstream_ray_obj_refs
@staticmethod
def _run_prefect_task(
*upstream_ray_obj_refs,
task: Task,
task_run_id: UUID,
context: Dict[str, Any],
parameters: Dict[str, Any],
wait_for: Optional[Iterable[PrefectFuture]] = None,
dependencies: Optional[Dict[str, Set[TaskRunInput]]] = None,
):
"""Resolves Ray futures before calling the actual Prefect task function.
Passing upstream_ray_obj_refs directly as args enables Ray to wait for
upstream tasks before running this remote function.
This variable is otherwise unused as the ray object refs are also
contained in parameters.
"""
# Resolve Ray futures to ensure that the task function receives the actual values
def resolve_ray_future(expr):
"""Resolves Ray future."""
if isinstance(expr, ray.ObjectRef):
return ray.get(expr)
return expr
parameters = visit_collection(
parameters, visit_fn=resolve_ray_future, return_data=True
)
run_task_kwargs = {
"task": task,
"task_run_id": task_run_id,
"parameters": parameters,
"wait_for": wait_for,
"dependencies": dependencies,
"context": context,
"return_type": "state",
}
# Ray does not support the submission of async functions and we must create a
# sync entrypoint
if task.isasync:
return asyncio.run(run_task_async(**run_task_kwargs))
else:
return run_task_sync(**run_task_kwargs)
def __enter__(self):
super().__enter__()
if ray.is_initialized():
self.logger.info(
"Local Ray instance is already initialized. "
"Using existing local instance."
)
return self
elif self.address and self.address != "auto":
self.logger.info(
f"Connecting to an existing Ray instance at {self.address}"
)
init_args = (self.address,)
else:
self.logger.info("Creating a local Ray instance")
init_args = ()
self._ray_context = ray.init(*init_args, **self.init_kwargs)
dashboard_url = getattr(self._ray_context, "dashboard_url", None)
# Display some information about the cluster
nodes = ray.nodes()
living_nodes = [node for node in nodes if node.get("alive")]
self.logger.info(f"Using Ray cluster with {len(living_nodes)} nodes.")
if dashboard_url:
self.logger.info(
f"The Ray UI is available at {dashboard_url}",
)
return self
def __exit__(self, *exc_info):
"""
Shuts down the driver/cluster.
"""
# Check if we are running on the driver. Calling ray.shutdown() when running on a
# worker will crash the worker.
if ray.get_runtime_context().worker.mode == 0:
# Running on the driver. Will shutdown cluster if started by this task runner.
self.logger.debug("Shutting down Ray driver...")
ray.shutdown()
super().__exit__(*exc_info)
|