Skip to content

prefect.deployments.runner

Objects for creating and configuring deployments for flows using serve functionality.

Example
import time
from prefect import flow, serve


@flow
def slow_flow(sleep: int = 60):
    "Sleepy flow - sleeps the provided amount of time (in seconds)."
    time.sleep(sleep)


@flow
def fast_flow():
    "Fastest flow this side of the Mississippi."
    return


if __name__ == "__main__":
    # to_deployment creates RunnerDeployment instances
    slow_deploy = slow_flow.to_deployment(name="sleeper", interval=45)
    fast_deploy = fast_flow.to_deployment(name="fast")

    serve(slow_deploy, fast_deploy)

DeploymentApplyError

Bases: RuntimeError

Raised when an error occurs while applying a deployment.

Source code in src/prefect/deployments/runner.py
90
91
92
93
class DeploymentApplyError(RuntimeError):
    """
    Raised when an error occurs while applying a deployment.
    """

RunnerDeployment

Bases: BaseModel

A Prefect RunnerDeployment definition, used for specifying and building deployments.

Attributes:

Name Type Description
name str

A name for the deployment (required).

version Optional[str]

An optional version for the deployment; defaults to the flow's version

description Optional[str]

An optional description of the deployment; defaults to the flow's description

tags List[str]

An optional list of tags to associate with this deployment; note that tags are used only for organizational purposes. For delegating work to agents, see work_queue_name.

schedule List[str]

A schedule to run this deployment on, once registered

parameters Dict[str, Any]

A dictionary of parameter values to pass to runs created from this deployment

path Dict[str, Any]

The path to the working directory for the workflow, relative to remote storage or, if stored on a local filesystem, an absolute path

entrypoint Optional[str]

The path to the entrypoint for the workflow, always relative to the path

parameter_openapi_schema Optional[str]

The parameter schema of the flow, including defaults.

enforce_parameter_schema bool

Whether or not the Prefect API should enforce the parameter schema for this deployment.

work_pool_name Optional[str]

The name of the work pool to use for this deployment.

work_queue_name Optional[str]

The name of the work queue to use for this deployment's scheduled runs. If not provided the default work queue for the work pool will be used.

job_variables Dict[str, Any]

Settings used to override the values specified default base job template of the chosen work pool. Refer to the base job template of the chosen work pool for available settings.

Source code in src/prefect/deployments/runner.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
class RunnerDeployment(BaseModel):
    """
    A Prefect RunnerDeployment definition, used for specifying and building deployments.

    Attributes:
        name: A name for the deployment (required).
        version: An optional version for the deployment; defaults to the flow's version
        description: An optional description of the deployment; defaults to the flow's
            description
        tags: An optional list of tags to associate with this deployment; note that tags
            are used only for organizational purposes. For delegating work to agents,
            see `work_queue_name`.
        schedule: A schedule to run this deployment on, once registered
        parameters: A dictionary of parameter values to pass to runs created from this
            deployment
        path: The path to the working directory for the workflow, relative to remote
            storage or, if stored on a local filesystem, an absolute path
        entrypoint: The path to the entrypoint for the workflow, always relative to the
            `path`
        parameter_openapi_schema: The parameter schema of the flow, including defaults.
        enforce_parameter_schema: Whether or not the Prefect API should enforce the
            parameter schema for this deployment.
        work_pool_name: The name of the work pool to use for this deployment.
        work_queue_name: The name of the work queue to use for this deployment's scheduled runs.
            If not provided the default work queue for the work pool will be used.
        job_variables: Settings used to override the values specified default base job template
            of the chosen work pool. Refer to the base job template of the chosen work pool for
            available settings.
    """

    model_config = ConfigDict(arbitrary_types_allowed=True)

    name: str = Field(..., description="The name of the deployment.")
    flow_name: Optional[str] = Field(
        None, description="The name of the underlying flow; typically inferred."
    )
    description: Optional[str] = Field(
        default=None, description="An optional description of the deployment."
    )
    version: Optional[str] = Field(
        default=None, description="An optional version for the deployment."
    )
    tags: List[str] = Field(
        default_factory=list,
        description="One of more tags to apply to this deployment.",
    )
    schedules: Optional[List[DeploymentScheduleCreate]] = Field(
        default=None,
        description="The schedules that should cause this deployment to run.",
    )
    concurrency_limit: Optional[int] = Field(
        default=None,
        description="The maximum number of concurrent runs of this deployment.",
    )
    paused: Optional[bool] = Field(
        default=None, description="Whether or not the deployment is paused."
    )
    parameters: Dict[str, Any] = Field(default_factory=dict)
    entrypoint: Optional[str] = Field(
        default=None,
        description=(
            "The path to the entrypoint for the workflow, relative to the `path`."
        ),
    )
    triggers: List[Union[DeploymentTriggerTypes, TriggerTypes]] = Field(
        default_factory=list,
        description="The triggers that should cause this deployment to run.",
    )
    enforce_parameter_schema: bool = Field(
        default=True,
        description=(
            "Whether or not the Prefect API should enforce the parameter schema for"
            " this deployment."
        ),
    )
    storage: Optional[RunnerStorage] = Field(
        default=None,
        description=(
            "The storage object used to retrieve flow code for this deployment."
        ),
    )
    work_pool_name: Optional[str] = Field(
        default=None,
        description=(
            "The name of the work pool to use for this deployment. Only used when"
            " the deployment is registered with a built runner."
        ),
    )
    work_queue_name: Optional[str] = Field(
        default=None,
        description=(
            "The name of the work queue to use for this deployment. Only used when"
            " the deployment is registered with a built runner."
        ),
    )
    job_variables: Dict[str, Any] = Field(
        default_factory=dict,
        description=(
            "Job variables used to override the default values of a work pool"
            " base job template. Only used when the deployment is registered with"
            " a built runner."
        ),
    )
    _entrypoint_type: EntrypointType = PrivateAttr(
        default=EntrypointType.FILE_PATH,
    )
    _path: Optional[str] = PrivateAttr(
        default=None,
    )
    _parameter_openapi_schema: ParameterSchema = PrivateAttr(
        default_factory=ParameterSchema,
    )

    @property
    def entrypoint_type(self) -> EntrypointType:
        return self._entrypoint_type

    @model_validator(mode="after")
    def validate_automation_names(self):
        """Ensure that each trigger has a name for its automation if none is provided."""
        trigger: Union[DeploymentTriggerTypes, TriggerTypes]
        for i, trigger in enumerate(self.triggers, start=1):
            if trigger.name is None:
                trigger.name = f"{self.name}__automation_{i}"
        return self

    @model_validator(mode="before")
    @classmethod
    def reconcile_paused(cls, values):
        return reconcile_paused_deployment(values)

    @model_validator(mode="before")
    @classmethod
    def reconcile_schedules(cls, values):
        return reconcile_schedules_runner(values)

    @sync_compatible
    async def apply(
        self, work_pool_name: Optional[str] = None, image: Optional[str] = None
    ) -> UUID:
        """
        Registers this deployment with the API and returns the deployment's ID.

        Args:
            work_pool_name: The name of the work pool to use for this
                deployment.
            image: The registry, name, and tag of the Docker image to
                use for this deployment. Only used when the deployment is
                deployed to a work pool.

        Returns:
            The ID of the created deployment.
        """

        work_pool_name = work_pool_name or self.work_pool_name

        if image and not work_pool_name:
            raise ValueError(
                "An image can only be provided when registering a deployment with a"
                " work pool."
            )

        if self.work_queue_name and not work_pool_name:
            raise ValueError(
                "A work queue can only be provided when registering a deployment with"
                " a work pool."
            )

        if self.job_variables and not work_pool_name:
            raise ValueError(
                "Job variables can only be provided when registering a deployment"
                " with a work pool."
            )

        async with get_client() as client:
            flow_id = await client.create_flow_from_name(self.flow_name)

            create_payload = dict(
                flow_id=flow_id,
                name=self.name,
                work_queue_name=self.work_queue_name,
                work_pool_name=work_pool_name,
                version=self.version,
                paused=self.paused,
                schedules=self.schedules,
                concurrency_limit=self.concurrency_limit,
                parameters=self.parameters,
                description=self.description,
                tags=self.tags,
                path=self._path,
                entrypoint=self.entrypoint,
                storage_document_id=None,
                infrastructure_document_id=None,
                parameter_openapi_schema=self._parameter_openapi_schema.model_dump(
                    exclude_unset=True
                ),
                enforce_parameter_schema=self.enforce_parameter_schema,
            )

            if work_pool_name:
                create_payload["job_variables"] = self.job_variables
                if image:
                    create_payload["job_variables"]["image"] = image
                create_payload["path"] = None if self.storage else self._path
                create_payload["pull_steps"] = (
                    [self.storage.to_pull_step()] if self.storage else []
                )

            try:
                deployment_id = await client.create_deployment(**create_payload)
            except Exception as exc:
                if isinstance(exc, PrefectHTTPStatusError):
                    detail = exc.response.json().get("detail")
                    if detail:
                        raise DeploymentApplyError(detail) from exc
                raise DeploymentApplyError(
                    f"Error while applying deployment: {str(exc)}"
                ) from exc

            try:
                # The triggers defined in the deployment spec are, essentially,
                # anonymous and attempting truly sync them with cloud is not
                # feasible. Instead, we remove all automations that are owned
                # by the deployment, meaning that they were created via this
                # mechanism below, and then recreate them.
                await client.delete_resource_owned_automations(
                    f"prefect.deployment.{deployment_id}"
                )
            except PrefectHTTPStatusError as e:
                if e.response.status_code == 404:
                    # This Prefect server does not support automations, so we can safely
                    # ignore this 404 and move on.
                    return deployment_id
                raise e

            for trigger in self.triggers:
                trigger.set_deployment_id(deployment_id)
                await client.create_automation(trigger.as_automation())

            return deployment_id

    @staticmethod
    def _construct_deployment_schedules(
        interval: Optional[
            Union[Iterable[Union[int, float, timedelta]], int, float, timedelta]
        ] = None,
        anchor_date: Optional[Union[datetime, str]] = None,
        cron: Optional[Union[Iterable[str], str]] = None,
        rrule: Optional[Union[Iterable[str], str]] = None,
        timezone: Optional[str] = None,
        schedule: Optional[SCHEDULE_TYPES] = None,
        schedules: Optional["FlexibleScheduleList"] = None,
    ) -> Union[List[DeploymentScheduleCreate], "FlexibleScheduleList"]:
        """
        Construct a schedule or schedules from the provided arguments.

        This method serves as a unified interface for creating deployment
        schedules. If `schedules` is provided, it is directly returned. If
        `schedule` is provided, it is encapsulated in a list and returned. If
        `interval`, `cron`, or `rrule` are provided, they are used to construct
        schedule objects.

        Args:
            interval: An interval on which to schedule runs, either as a single
              value or as a list of values. Accepts numbers (interpreted as
              seconds) or `timedelta` objects. Each value defines a separate
              scheduling interval.
            anchor_date: The anchor date from which interval schedules should
              start. This applies to all intervals if a list is provided.
            cron: A cron expression or a list of cron expressions defining cron
              schedules. Each expression defines a separate cron schedule.
            rrule: An rrule string or a list of rrule strings for scheduling.
              Each string defines a separate recurrence rule.
            timezone: The timezone to apply to the cron or rrule schedules.
              This is a single value applied uniformly to all schedules.
            schedule: A singular schedule object, used for advanced scheduling
              options like specifying a timezone. This is returned as a list
              containing this single schedule.
            schedules: A pre-defined list of schedule objects. If provided,
              this list is returned as-is, bypassing other schedule construction
              logic.
        """

        num_schedules = sum(
            1
            for entry in (interval, cron, rrule, schedule, schedules)
            if entry is not None
        )
        if num_schedules > 1:
            raise ValueError(
                "Only one of interval, cron, rrule, or schedules can be provided."
            )
        elif num_schedules == 0:
            return []

        if schedules is not None:
            return schedules
        elif interval or cron or rrule:
            # `interval`, `cron`, and `rrule` can be lists of values. This
            # block figures out which one is not None and uses that to
            # construct the list of schedules via `construct_schedule`.
            parameters = [("interval", interval), ("cron", cron), ("rrule", rrule)]
            schedule_type, value = [
                param for param in parameters if param[1] is not None
            ][0]

            if not isiterable(value):
                value = [value]

            return [
                create_deployment_schedule_create(
                    construct_schedule(
                        **{
                            schedule_type: v,
                            "timezone": timezone,
                            "anchor_date": anchor_date,
                        }
                    )
                )
                for v in value
            ]
        else:
            return [create_deployment_schedule_create(schedule)]

    def _set_defaults_from_flow(self, flow: "Flow"):
        self._parameter_openapi_schema = parameter_schema(flow)

        if not self.version:
            self.version = flow.version
        if not self.description:
            self.description = flow.description

    @classmethod
    def from_flow(
        cls,
        flow: "Flow",
        name: str,
        interval: Optional[
            Union[Iterable[Union[int, float, timedelta]], int, float, timedelta]
        ] = None,
        cron: Optional[Union[Iterable[str], str]] = None,
        rrule: Optional[Union[Iterable[str], str]] = None,
        paused: Optional[bool] = None,
        schedules: Optional["FlexibleScheduleList"] = None,
        concurrency_limit: Optional[int] = None,
        parameters: Optional[dict] = None,
        triggers: Optional[List[Union[DeploymentTriggerTypes, TriggerTypes]]] = None,
        description: Optional[str] = None,
        tags: Optional[List[str]] = None,
        version: Optional[str] = None,
        enforce_parameter_schema: bool = True,
        work_pool_name: Optional[str] = None,
        work_queue_name: Optional[str] = None,
        job_variables: Optional[Dict[str, Any]] = None,
        entrypoint_type: EntrypointType = EntrypointType.FILE_PATH,
    ) -> "RunnerDeployment":
        """
        Configure a deployment for a given flow.

        Args:
            flow: A flow function to deploy
            name: A name for the deployment
            interval: An interval on which to execute the current flow. Accepts either a number
                or a timedelta object. If a number is given, it will be interpreted as seconds.
            cron: A cron schedule of when to execute runs of this flow.
            rrule: An rrule schedule of when to execute runs of this flow.
            paused: Whether or not to set this deployment as paused.
            schedules: A list of schedule objects defining when to execute runs of this deployment.
                Used to define multiple schedules or additional scheduling options like `timezone`.
            triggers: A list of triggers that should kick of a run of this flow.
            parameters: A dictionary of default parameter values to pass to runs of this flow.
            description: A description for the created deployment. Defaults to the flow's
                description if not provided.
            tags: A list of tags to associate with the created deployment for organizational
                purposes.
            version: A version for the created deployment. Defaults to the flow's version.
            enforce_parameter_schema: Whether or not the Prefect API should enforce the
                parameter schema for this deployment.
            work_pool_name: The name of the work pool to use for this deployment.
            work_queue_name: The name of the work queue to use for this deployment's scheduled runs.
                If not provided the default work queue for the work pool will be used.
            job_variables: Settings used to override the values specified default base job template
                of the chosen work pool. Refer to the base job template of the chosen work pool for
                available settings.
        """
        constructed_schedules = cls._construct_deployment_schedules(
            interval=interval,
            cron=cron,
            rrule=rrule,
            schedules=schedules,
        )

        job_variables = job_variables or {}

        deployment = cls(
            name=Path(name).stem,
            flow_name=flow.name,
            schedules=constructed_schedules,
            concurrency_limit=concurrency_limit,
            paused=paused,
            tags=tags or [],
            triggers=triggers or [],
            parameters=parameters or {},
            description=description,
            version=version,
            enforce_parameter_schema=enforce_parameter_schema,
            work_pool_name=work_pool_name,
            work_queue_name=work_queue_name,
            job_variables=job_variables,
        )

        if not deployment.entrypoint:
            no_file_location_error = (
                "Flows defined interactively cannot be deployed. Check out the"
                " quickstart guide for help getting started:"
                " https://docs.prefect.io/latest/getting-started/quickstart"
            )
            ## first see if an entrypoint can be determined
            flow_file = getattr(flow, "__globals__", {}).get("__file__")
            mod_name = getattr(flow, "__module__", None)
            if entrypoint_type == EntrypointType.MODULE_PATH:
                if mod_name:
                    deployment.entrypoint = f"{mod_name}.{flow.__name__}"
                else:
                    raise ValueError(
                        "Unable to determine module path for provided flow."
                    )
            else:
                if not flow_file:
                    if not mod_name:
                        raise ValueError(no_file_location_error)
                    try:
                        module = importlib.import_module(mod_name)
                        flow_file = getattr(module, "__file__", None)
                    except ModuleNotFoundError as exc:
                        if "__prefect_loader__" in str(exc):
                            raise ValueError(
                                "Cannot create a RunnerDeployment from a flow that has been"
                                " loaded from an entrypoint. To deploy a flow via"
                                " entrypoint, use RunnerDeployment.from_entrypoint instead."
                            )
                        raise ValueError(no_file_location_error)
                    if not flow_file:
                        raise ValueError(no_file_location_error)

                # set entrypoint
                entry_path = (
                    Path(flow_file).absolute().relative_to(Path.cwd().absolute())
                )
                deployment.entrypoint = f"{entry_path}:{flow.fn.__name__}"

        if entrypoint_type == EntrypointType.FILE_PATH and not deployment._path:
            deployment._path = "."

        deployment._entrypoint_type = entrypoint_type

        cls._set_defaults_from_flow(deployment, flow)

        return deployment

    @classmethod
    def from_entrypoint(
        cls,
        entrypoint: str,
        name: str,
        interval: Optional[
            Union[Iterable[Union[int, float, timedelta]], int, float, timedelta]
        ] = None,
        cron: Optional[Union[Iterable[str], str]] = None,
        rrule: Optional[Union[Iterable[str], str]] = None,
        paused: Optional[bool] = None,
        schedules: Optional["FlexibleScheduleList"] = None,
        concurrency_limit: Optional[int] = None,
        parameters: Optional[dict] = None,
        triggers: Optional[List[Union[DeploymentTriggerTypes, TriggerTypes]]] = None,
        description: Optional[str] = None,
        tags: Optional[List[str]] = None,
        version: Optional[str] = None,
        enforce_parameter_schema: bool = True,
        work_pool_name: Optional[str] = None,
        work_queue_name: Optional[str] = None,
        job_variables: Optional[Dict[str, Any]] = None,
    ) -> "RunnerDeployment":
        """
        Configure a deployment for a given flow located at a given entrypoint.

        Args:
            entrypoint:  The path to a file containing a flow and the name of the flow function in
                the format `./path/to/file.py:flow_func_name`.
            name: A name for the deployment
            interval: An interval on which to execute the current flow. Accepts either a number
                or a timedelta object. If a number is given, it will be interpreted as seconds.
            cron: A cron schedule of when to execute runs of this flow.
            rrule: An rrule schedule of when to execute runs of this flow.
            paused: Whether or not to set this deployment as paused.
            schedules: A list of schedule objects defining when to execute runs of this deployment.
                Used to define multiple schedules or additional scheduling options like `timezone`.
            triggers: A list of triggers that should kick of a run of this flow.
            parameters: A dictionary of default parameter values to pass to runs of this flow.
            description: A description for the created deployment. Defaults to the flow's
                description if not provided.
            tags: A list of tags to associate with the created deployment for organizational
                purposes.
            version: A version for the created deployment. Defaults to the flow's version.
            enforce_parameter_schema: Whether or not the Prefect API should enforce the
                parameter schema for this deployment.
            work_pool_name: The name of the work pool to use for this deployment.
            work_queue_name: The name of the work queue to use for this deployment's scheduled runs.
                If not provided the default work queue for the work pool will be used.
            job_variables: Settings used to override the values specified default base job template
                of the chosen work pool. Refer to the base job template of the chosen work pool for
                available settings.
        """
        from prefect.flows import load_flow_from_entrypoint

        job_variables = job_variables or {}
        flow = load_flow_from_entrypoint(entrypoint)

        constructed_schedules = cls._construct_deployment_schedules(
            interval=interval,
            cron=cron,
            rrule=rrule,
            schedules=schedules,
        )

        deployment = cls(
            name=Path(name).stem,
            flow_name=flow.name,
            schedules=constructed_schedules,
            concurrency_limit=concurrency_limit,
            paused=paused,
            tags=tags or [],
            triggers=triggers or [],
            parameters=parameters or {},
            description=description,
            version=version,
            entrypoint=entrypoint,
            enforce_parameter_schema=enforce_parameter_schema,
            work_pool_name=work_pool_name,
            work_queue_name=work_queue_name,
            job_variables=job_variables,
        )
        deployment._path = str(Path.cwd())

        cls._set_defaults_from_flow(deployment, flow)

        return deployment

    @classmethod
    @sync_compatible
    async def from_storage(
        cls,
        storage: RunnerStorage,
        entrypoint: str,
        name: str,
        interval: Optional[
            Union[Iterable[Union[int, float, timedelta]], int, float, timedelta]
        ] = None,
        cron: Optional[Union[Iterable[str], str]] = None,
        rrule: Optional[Union[Iterable[str], str]] = None,
        paused: Optional[bool] = None,
        schedules: Optional["FlexibleScheduleList"] = None,
        concurrency_limit: Optional[int] = None,
        parameters: Optional[dict] = None,
        triggers: Optional[List[Union[DeploymentTriggerTypes, TriggerTypes]]] = None,
        description: Optional[str] = None,
        tags: Optional[List[str]] = None,
        version: Optional[str] = None,
        enforce_parameter_schema: bool = True,
        work_pool_name: Optional[str] = None,
        work_queue_name: Optional[str] = None,
        job_variables: Optional[Dict[str, Any]] = None,
    ):
        """
        Create a RunnerDeployment from a flow located at a given entrypoint and stored in a
        local storage location.

        Args:
            entrypoint:  The path to a file containing a flow and the name of the flow function in
                the format `./path/to/file.py:flow_func_name`.
            name: A name for the deployment
            storage: A storage object to use for retrieving flow code. If not provided, a
                URL must be provided.
            interval: An interval on which to execute the current flow. Accepts either a number
                or a timedelta object. If a number is given, it will be interpreted as seconds.
            cron: A cron schedule of when to execute runs of this flow.
            rrule: An rrule schedule of when to execute runs of this flow.
            triggers: A list of triggers that should kick of a run of this flow.
            parameters: A dictionary of default parameter values to pass to runs of this flow.
            description: A description for the created deployment. Defaults to the flow's
                description if not provided.
            tags: A list of tags to associate with the created deployment for organizational
                purposes.
            version: A version for the created deployment. Defaults to the flow's version.
            enforce_parameter_schema: Whether or not the Prefect API should enforce the
                parameter schema for this deployment.
            work_pool_name: The name of the work pool to use for this deployment.
            work_queue_name: The name of the work queue to use for this deployment's scheduled runs.
                If not provided the default work queue for the work pool will be used.
            job_variables: Settings used to override the values specified default base job template
                of the chosen work pool. Refer to the base job template of the chosen work pool for
                available settings.
        """
        from prefect.flows import load_flow_from_entrypoint

        constructed_schedules = cls._construct_deployment_schedules(
            interval=interval,
            cron=cron,
            rrule=rrule,
            schedules=schedules,
        )

        job_variables = job_variables or {}

        with tempfile.TemporaryDirectory() as tmpdir:
            storage.set_base_path(Path(tmpdir))
            await storage.pull_code()

            full_entrypoint = str(storage.destination / entrypoint)
            flow = await from_async.wait_for_call_in_new_thread(
                create_call(load_flow_from_entrypoint, full_entrypoint)
            )

        deployment = cls(
            name=Path(name).stem,
            flow_name=flow.name,
            schedules=constructed_schedules,
            concurrency_limit=concurrency_limit,
            paused=paused,
            tags=tags or [],
            triggers=triggers or [],
            parameters=parameters or {},
            description=description,
            version=version,
            entrypoint=entrypoint,
            enforce_parameter_schema=enforce_parameter_schema,
            storage=storage,
            work_pool_name=work_pool_name,
            work_queue_name=work_queue_name,
            job_variables=job_variables,
        )
        deployment._path = str(storage.destination).replace(
            tmpdir, "$STORAGE_BASE_PATH"
        )

        cls._set_defaults_from_flow(deployment, flow)

        return deployment

apply(work_pool_name=None, image=None) async

Registers this deployment with the API and returns the deployment's ID.

Parameters:

Name Type Description Default
work_pool_name Optional[str]

The name of the work pool to use for this deployment.

None
image Optional[str]

The registry, name, and tag of the Docker image to use for this deployment. Only used when the deployment is deployed to a work pool.

None

Returns:

Type Description
UUID

The ID of the created deployment.

Source code in src/prefect/deployments/runner.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
@sync_compatible
async def apply(
    self, work_pool_name: Optional[str] = None, image: Optional[str] = None
) -> UUID:
    """
    Registers this deployment with the API and returns the deployment's ID.

    Args:
        work_pool_name: The name of the work pool to use for this
            deployment.
        image: The registry, name, and tag of the Docker image to
            use for this deployment. Only used when the deployment is
            deployed to a work pool.

    Returns:
        The ID of the created deployment.
    """

    work_pool_name = work_pool_name or self.work_pool_name

    if image and not work_pool_name:
        raise ValueError(
            "An image can only be provided when registering a deployment with a"
            " work pool."
        )

    if self.work_queue_name and not work_pool_name:
        raise ValueError(
            "A work queue can only be provided when registering a deployment with"
            " a work pool."
        )

    if self.job_variables and not work_pool_name:
        raise ValueError(
            "Job variables can only be provided when registering a deployment"
            " with a work pool."
        )

    async with get_client() as client:
        flow_id = await client.create_flow_from_name(self.flow_name)

        create_payload = dict(
            flow_id=flow_id,
            name=self.name,
            work_queue_name=self.work_queue_name,
            work_pool_name=work_pool_name,
            version=self.version,
            paused=self.paused,
            schedules=self.schedules,
            concurrency_limit=self.concurrency_limit,
            parameters=self.parameters,
            description=self.description,
            tags=self.tags,
            path=self._path,
            entrypoint=self.entrypoint,
            storage_document_id=None,
            infrastructure_document_id=None,
            parameter_openapi_schema=self._parameter_openapi_schema.model_dump(
                exclude_unset=True
            ),
            enforce_parameter_schema=self.enforce_parameter_schema,
        )

        if work_pool_name:
            create_payload["job_variables"] = self.job_variables
            if image:
                create_payload["job_variables"]["image"] = image
            create_payload["path"] = None if self.storage else self._path
            create_payload["pull_steps"] = (
                [self.storage.to_pull_step()] if self.storage else []
            )

        try:
            deployment_id = await client.create_deployment(**create_payload)
        except Exception as exc:
            if isinstance(exc, PrefectHTTPStatusError):
                detail = exc.response.json().get("detail")
                if detail:
                    raise DeploymentApplyError(detail) from exc
            raise DeploymentApplyError(
                f"Error while applying deployment: {str(exc)}"
            ) from exc

        try:
            # The triggers defined in the deployment spec are, essentially,
            # anonymous and attempting truly sync them with cloud is not
            # feasible. Instead, we remove all automations that are owned
            # by the deployment, meaning that they were created via this
            # mechanism below, and then recreate them.
            await client.delete_resource_owned_automations(
                f"prefect.deployment.{deployment_id}"
            )
        except PrefectHTTPStatusError as e:
            if e.response.status_code == 404:
                # This Prefect server does not support automations, so we can safely
                # ignore this 404 and move on.
                return deployment_id
            raise e

        for trigger in self.triggers:
            trigger.set_deployment_id(deployment_id)
            await client.create_automation(trigger.as_automation())

        return deployment_id

from_entrypoint(entrypoint, name, interval=None, cron=None, rrule=None, paused=None, schedules=None, concurrency_limit=None, parameters=None, triggers=None, description=None, tags=None, version=None, enforce_parameter_schema=True, work_pool_name=None, work_queue_name=None, job_variables=None) classmethod

Configure a deployment for a given flow located at a given entrypoint.

Parameters:

Name Type Description Default
entrypoint str

The path to a file containing a flow and the name of the flow function in the format ./path/to/file.py:flow_func_name.

required
name str

A name for the deployment

required
interval Optional[Union[Iterable[Union[int, float, timedelta]], int, float, timedelta]]

An interval on which to execute the current flow. Accepts either a number or a timedelta object. If a number is given, it will be interpreted as seconds.

None
cron Optional[Union[Iterable[str], str]]

A cron schedule of when to execute runs of this flow.

None
rrule Optional[Union[Iterable[str], str]]

An rrule schedule of when to execute runs of this flow.

None
paused Optional[bool]

Whether or not to set this deployment as paused.

None
schedules Optional[FlexibleScheduleList]

A list of schedule objects defining when to execute runs of this deployment. Used to define multiple schedules or additional scheduling options like timezone.

None
triggers Optional[List[Union[DeploymentTriggerTypes, TriggerTypes]]]

A list of triggers that should kick of a run of this flow.

None
parameters Optional[dict]

A dictionary of default parameter values to pass to runs of this flow.

None
description Optional[str]

A description for the created deployment. Defaults to the flow's description if not provided.

None
tags Optional[List[str]]

A list of tags to associate with the created deployment for organizational purposes.

None
version Optional[str]

A version for the created deployment. Defaults to the flow's version.

None
enforce_parameter_schema bool

Whether or not the Prefect API should enforce the parameter schema for this deployment.

True
work_pool_name Optional[str]

The name of the work pool to use for this deployment.

None
work_queue_name Optional[str]

The name of the work queue to use for this deployment's scheduled runs. If not provided the default work queue for the work pool will be used.

None
job_variables Optional[Dict[str, Any]]

Settings used to override the values specified default base job template of the chosen work pool. Refer to the base job template of the chosen work pool for available settings.

None
Source code in src/prefect/deployments/runner.py
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
@classmethod
def from_entrypoint(
    cls,
    entrypoint: str,
    name: str,
    interval: Optional[
        Union[Iterable[Union[int, float, timedelta]], int, float, timedelta]
    ] = None,
    cron: Optional[Union[Iterable[str], str]] = None,
    rrule: Optional[Union[Iterable[str], str]] = None,
    paused: Optional[bool] = None,
    schedules: Optional["FlexibleScheduleList"] = None,
    concurrency_limit: Optional[int] = None,
    parameters: Optional[dict] = None,
    triggers: Optional[List[Union[DeploymentTriggerTypes, TriggerTypes]]] = None,
    description: Optional[str] = None,
    tags: Optional[List[str]] = None,
    version: Optional[str] = None,
    enforce_parameter_schema: bool = True,
    work_pool_name: Optional[str] = None,
    work_queue_name: Optional[str] = None,
    job_variables: Optional[Dict[str, Any]] = None,
) -> "RunnerDeployment":
    """
    Configure a deployment for a given flow located at a given entrypoint.

    Args:
        entrypoint:  The path to a file containing a flow and the name of the flow function in
            the format `./path/to/file.py:flow_func_name`.
        name: A name for the deployment
        interval: An interval on which to execute the current flow. Accepts either a number
            or a timedelta object. If a number is given, it will be interpreted as seconds.
        cron: A cron schedule of when to execute runs of this flow.
        rrule: An rrule schedule of when to execute runs of this flow.
        paused: Whether or not to set this deployment as paused.
        schedules: A list of schedule objects defining when to execute runs of this deployment.
            Used to define multiple schedules or additional scheduling options like `timezone`.
        triggers: A list of triggers that should kick of a run of this flow.
        parameters: A dictionary of default parameter values to pass to runs of this flow.
        description: A description for the created deployment. Defaults to the flow's
            description if not provided.
        tags: A list of tags to associate with the created deployment for organizational
            purposes.
        version: A version for the created deployment. Defaults to the flow's version.
        enforce_parameter_schema: Whether or not the Prefect API should enforce the
            parameter schema for this deployment.
        work_pool_name: The name of the work pool to use for this deployment.
        work_queue_name: The name of the work queue to use for this deployment's scheduled runs.
            If not provided the default work queue for the work pool will be used.
        job_variables: Settings used to override the values specified default base job template
            of the chosen work pool. Refer to the base job template of the chosen work pool for
            available settings.
    """
    from prefect.flows import load_flow_from_entrypoint

    job_variables = job_variables or {}
    flow = load_flow_from_entrypoint(entrypoint)

    constructed_schedules = cls._construct_deployment_schedules(
        interval=interval,
        cron=cron,
        rrule=rrule,
        schedules=schedules,
    )

    deployment = cls(
        name=Path(name).stem,
        flow_name=flow.name,
        schedules=constructed_schedules,
        concurrency_limit=concurrency_limit,
        paused=paused,
        tags=tags or [],
        triggers=triggers or [],
        parameters=parameters or {},
        description=description,
        version=version,
        entrypoint=entrypoint,
        enforce_parameter_schema=enforce_parameter_schema,
        work_pool_name=work_pool_name,
        work_queue_name=work_queue_name,
        job_variables=job_variables,
    )
    deployment._path = str(Path.cwd())

    cls._set_defaults_from_flow(deployment, flow)

    return deployment

from_flow(flow, name, interval=None, cron=None, rrule=None, paused=None, schedules=None, concurrency_limit=None, parameters=None, triggers=None, description=None, tags=None, version=None, enforce_parameter_schema=True, work_pool_name=None, work_queue_name=None, job_variables=None, entrypoint_type=EntrypointType.FILE_PATH) classmethod

Configure a deployment for a given flow.

Parameters:

Name Type Description Default
flow Flow

A flow function to deploy

required
name str

A name for the deployment

required
interval Optional[Union[Iterable[Union[int, float, timedelta]], int, float, timedelta]]

An interval on which to execute the current flow. Accepts either a number or a timedelta object. If a number is given, it will be interpreted as seconds.

None
cron Optional[Union[Iterable[str], str]]

A cron schedule of when to execute runs of this flow.

None
rrule Optional[Union[Iterable[str], str]]

An rrule schedule of when to execute runs of this flow.

None
paused Optional[bool]

Whether or not to set this deployment as paused.

None
schedules Optional[FlexibleScheduleList]

A list of schedule objects defining when to execute runs of this deployment. Used to define multiple schedules or additional scheduling options like timezone.

None
triggers Optional[List[Union[DeploymentTriggerTypes, TriggerTypes]]]

A list of triggers that should kick of a run of this flow.

None
parameters Optional[dict]

A dictionary of default parameter values to pass to runs of this flow.

None
description Optional[str]

A description for the created deployment. Defaults to the flow's description if not provided.

None
tags Optional[List[str]]

A list of tags to associate with the created deployment for organizational purposes.

None
version Optional[str]

A version for the created deployment. Defaults to the flow's version.

None
enforce_parameter_schema bool

Whether or not the Prefect API should enforce the parameter schema for this deployment.

True
work_pool_name Optional[str]

The name of the work pool to use for this deployment.

None
work_queue_name Optional[str]

The name of the work queue to use for this deployment's scheduled runs. If not provided the default work queue for the work pool will be used.

None
job_variables Optional[Dict[str, Any]]

Settings used to override the values specified default base job template of the chosen work pool. Refer to the base job template of the chosen work pool for available settings.

None
Source code in src/prefect/deployments/runner.py
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
@classmethod
def from_flow(
    cls,
    flow: "Flow",
    name: str,
    interval: Optional[
        Union[Iterable[Union[int, float, timedelta]], int, float, timedelta]
    ] = None,
    cron: Optional[Union[Iterable[str], str]] = None,
    rrule: Optional[Union[Iterable[str], str]] = None,
    paused: Optional[bool] = None,
    schedules: Optional["FlexibleScheduleList"] = None,
    concurrency_limit: Optional[int] = None,
    parameters: Optional[dict] = None,
    triggers: Optional[List[Union[DeploymentTriggerTypes, TriggerTypes]]] = None,
    description: Optional[str] = None,
    tags: Optional[List[str]] = None,
    version: Optional[str] = None,
    enforce_parameter_schema: bool = True,
    work_pool_name: Optional[str] = None,
    work_queue_name: Optional[str] = None,
    job_variables: Optional[Dict[str, Any]] = None,
    entrypoint_type: EntrypointType = EntrypointType.FILE_PATH,
) -> "RunnerDeployment":
    """
    Configure a deployment for a given flow.

    Args:
        flow: A flow function to deploy
        name: A name for the deployment
        interval: An interval on which to execute the current flow. Accepts either a number
            or a timedelta object. If a number is given, it will be interpreted as seconds.
        cron: A cron schedule of when to execute runs of this flow.
        rrule: An rrule schedule of when to execute runs of this flow.
        paused: Whether or not to set this deployment as paused.
        schedules: A list of schedule objects defining when to execute runs of this deployment.
            Used to define multiple schedules or additional scheduling options like `timezone`.
        triggers: A list of triggers that should kick of a run of this flow.
        parameters: A dictionary of default parameter values to pass to runs of this flow.
        description: A description for the created deployment. Defaults to the flow's
            description if not provided.
        tags: A list of tags to associate with the created deployment for organizational
            purposes.
        version: A version for the created deployment. Defaults to the flow's version.
        enforce_parameter_schema: Whether or not the Prefect API should enforce the
            parameter schema for this deployment.
        work_pool_name: The name of the work pool to use for this deployment.
        work_queue_name: The name of the work queue to use for this deployment's scheduled runs.
            If not provided the default work queue for the work pool will be used.
        job_variables: Settings used to override the values specified default base job template
            of the chosen work pool. Refer to the base job template of the chosen work pool for
            available settings.
    """
    constructed_schedules = cls._construct_deployment_schedules(
        interval=interval,
        cron=cron,
        rrule=rrule,
        schedules=schedules,
    )

    job_variables = job_variables or {}

    deployment = cls(
        name=Path(name).stem,
        flow_name=flow.name,
        schedules=constructed_schedules,
        concurrency_limit=concurrency_limit,
        paused=paused,
        tags=tags or [],
        triggers=triggers or [],
        parameters=parameters or {},
        description=description,
        version=version,
        enforce_parameter_schema=enforce_parameter_schema,
        work_pool_name=work_pool_name,
        work_queue_name=work_queue_name,
        job_variables=job_variables,
    )

    if not deployment.entrypoint:
        no_file_location_error = (
            "Flows defined interactively cannot be deployed. Check out the"
            " quickstart guide for help getting started:"
            " https://docs.prefect.io/latest/getting-started/quickstart"
        )
        ## first see if an entrypoint can be determined
        flow_file = getattr(flow, "__globals__", {}).get("__file__")
        mod_name = getattr(flow, "__module__", None)
        if entrypoint_type == EntrypointType.MODULE_PATH:
            if mod_name:
                deployment.entrypoint = f"{mod_name}.{flow.__name__}"
            else:
                raise ValueError(
                    "Unable to determine module path for provided flow."
                )
        else:
            if not flow_file:
                if not mod_name:
                    raise ValueError(no_file_location_error)
                try:
                    module = importlib.import_module(mod_name)
                    flow_file = getattr(module, "__file__", None)
                except ModuleNotFoundError as exc:
                    if "__prefect_loader__" in str(exc):
                        raise ValueError(
                            "Cannot create a RunnerDeployment from a flow that has been"
                            " loaded from an entrypoint. To deploy a flow via"
                            " entrypoint, use RunnerDeployment.from_entrypoint instead."
                        )
                    raise ValueError(no_file_location_error)
                if not flow_file:
                    raise ValueError(no_file_location_error)

            # set entrypoint
            entry_path = (
                Path(flow_file).absolute().relative_to(Path.cwd().absolute())
            )
            deployment.entrypoint = f"{entry_path}:{flow.fn.__name__}"

    if entrypoint_type == EntrypointType.FILE_PATH and not deployment._path:
        deployment._path = "."

    deployment._entrypoint_type = entrypoint_type

    cls._set_defaults_from_flow(deployment, flow)

    return deployment

from_storage(storage, entrypoint, name, interval=None, cron=None, rrule=None, paused=None, schedules=None, concurrency_limit=None, parameters=None, triggers=None, description=None, tags=None, version=None, enforce_parameter_schema=True, work_pool_name=None, work_queue_name=None, job_variables=None) async classmethod

Create a RunnerDeployment from a flow located at a given entrypoint and stored in a local storage location.

Parameters:

Name Type Description Default
entrypoint str

The path to a file containing a flow and the name of the flow function in the format ./path/to/file.py:flow_func_name.

required
name str

A name for the deployment

required
storage RunnerStorage

A storage object to use for retrieving flow code. If not provided, a URL must be provided.

required
interval Optional[Union[Iterable[Union[int, float, timedelta]], int, float, timedelta]]

An interval on which to execute the current flow. Accepts either a number or a timedelta object. If a number is given, it will be interpreted as seconds.

None
cron Optional[Union[Iterable[str], str]]

A cron schedule of when to execute runs of this flow.

None
rrule Optional[Union[Iterable[str], str]]

An rrule schedule of when to execute runs of this flow.

None
triggers Optional[List[Union[DeploymentTriggerTypes, TriggerTypes]]]

A list of triggers that should kick of a run of this flow.

None
parameters Optional[dict]

A dictionary of default parameter values to pass to runs of this flow.

None
description Optional[str]

A description for the created deployment. Defaults to the flow's description if not provided.

None
tags Optional[List[str]]

A list of tags to associate with the created deployment for organizational purposes.

None
version Optional[str]

A version for the created deployment. Defaults to the flow's version.

None
enforce_parameter_schema bool

Whether or not the Prefect API should enforce the parameter schema for this deployment.

True
work_pool_name Optional[str]

The name of the work pool to use for this deployment.

None
work_queue_name Optional[str]

The name of the work queue to use for this deployment's scheduled runs. If not provided the default work queue for the work pool will be used.

None
job_variables Optional[Dict[str, Any]]

Settings used to override the values specified default base job template of the chosen work pool. Refer to the base job template of the chosen work pool for available settings.

None
Source code in src/prefect/deployments/runner.py
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
@classmethod
@sync_compatible
async def from_storage(
    cls,
    storage: RunnerStorage,
    entrypoint: str,
    name: str,
    interval: Optional[
        Union[Iterable[Union[int, float, timedelta]], int, float, timedelta]
    ] = None,
    cron: Optional[Union[Iterable[str], str]] = None,
    rrule: Optional[Union[Iterable[str], str]] = None,
    paused: Optional[bool] = None,
    schedules: Optional["FlexibleScheduleList"] = None,
    concurrency_limit: Optional[int] = None,
    parameters: Optional[dict] = None,
    triggers: Optional[List[Union[DeploymentTriggerTypes, TriggerTypes]]] = None,
    description: Optional[str] = None,
    tags: Optional[List[str]] = None,
    version: Optional[str] = None,
    enforce_parameter_schema: bool = True,
    work_pool_name: Optional[str] = None,
    work_queue_name: Optional[str] = None,
    job_variables: Optional[Dict[str, Any]] = None,
):
    """
    Create a RunnerDeployment from a flow located at a given entrypoint and stored in a
    local storage location.

    Args:
        entrypoint:  The path to a file containing a flow and the name of the flow function in
            the format `./path/to/file.py:flow_func_name`.
        name: A name for the deployment
        storage: A storage object to use for retrieving flow code. If not provided, a
            URL must be provided.
        interval: An interval on which to execute the current flow. Accepts either a number
            or a timedelta object. If a number is given, it will be interpreted as seconds.
        cron: A cron schedule of when to execute runs of this flow.
        rrule: An rrule schedule of when to execute runs of this flow.
        triggers: A list of triggers that should kick of a run of this flow.
        parameters: A dictionary of default parameter values to pass to runs of this flow.
        description: A description for the created deployment. Defaults to the flow's
            description if not provided.
        tags: A list of tags to associate with the created deployment for organizational
            purposes.
        version: A version for the created deployment. Defaults to the flow's version.
        enforce_parameter_schema: Whether or not the Prefect API should enforce the
            parameter schema for this deployment.
        work_pool_name: The name of the work pool to use for this deployment.
        work_queue_name: The name of the work queue to use for this deployment's scheduled runs.
            If not provided the default work queue for the work pool will be used.
        job_variables: Settings used to override the values specified default base job template
            of the chosen work pool. Refer to the base job template of the chosen work pool for
            available settings.
    """
    from prefect.flows import load_flow_from_entrypoint

    constructed_schedules = cls._construct_deployment_schedules(
        interval=interval,
        cron=cron,
        rrule=rrule,
        schedules=schedules,
    )

    job_variables = job_variables or {}

    with tempfile.TemporaryDirectory() as tmpdir:
        storage.set_base_path(Path(tmpdir))
        await storage.pull_code()

        full_entrypoint = str(storage.destination / entrypoint)
        flow = await from_async.wait_for_call_in_new_thread(
            create_call(load_flow_from_entrypoint, full_entrypoint)
        )

    deployment = cls(
        name=Path(name).stem,
        flow_name=flow.name,
        schedules=constructed_schedules,
        concurrency_limit=concurrency_limit,
        paused=paused,
        tags=tags or [],
        triggers=triggers or [],
        parameters=parameters or {},
        description=description,
        version=version,
        entrypoint=entrypoint,
        enforce_parameter_schema=enforce_parameter_schema,
        storage=storage,
        work_pool_name=work_pool_name,
        work_queue_name=work_queue_name,
        job_variables=job_variables,
    )
    deployment._path = str(storage.destination).replace(
        tmpdir, "$STORAGE_BASE_PATH"
    )

    cls._set_defaults_from_flow(deployment, flow)

    return deployment

validate_automation_names()

Ensure that each trigger has a name for its automation if none is provided.

Source code in src/prefect/deployments/runner.py
213
214
215
216
217
218
219
220
@model_validator(mode="after")
def validate_automation_names(self):
    """Ensure that each trigger has a name for its automation if none is provided."""
    trigger: Union[DeploymentTriggerTypes, TriggerTypes]
    for i, trigger in enumerate(self.triggers, start=1):
        if trigger.name is None:
            trigger.name = f"{self.name}__automation_{i}"
    return self

deploy(*deployments, work_pool_name=None, image=None, build=True, push=True, print_next_steps_message=True, ignore_warnings=False) async

Deploy the provided list of deployments to dynamic infrastructure via a work pool.

By default, calling this function will build a Docker image for the deployments, push it to a registry, and create each deployment via the Prefect API that will run the corresponding flow on the given schedule.

If you want to use an existing image, you can pass build=False to skip building and pushing an image.

Parameters:

Name Type Description Default
*deployments RunnerDeployment

A list of deployments to deploy.

()
work_pool_name Optional[str]

The name of the work pool to use for these deployments. Defaults to the value of PREFECT_DEFAULT_WORK_POOL_NAME.

None
image Optional[Union[str, DockerImage]]

The name of the Docker image to build, including the registry and repository. Pass a DockerImage instance to customize the Dockerfile used and build arguments.

None
build bool

Whether or not to build a new image for the flow. If False, the provided image will be used as-is and pulled at runtime.

True
push bool

Whether or not to skip pushing the built image to a registry.

True
print_next_steps_message bool

Whether or not to print a message with next steps after deploying the deployments.

True

Returns:

Type Description
List[UUID]

A list of deployment IDs for the created/updated deployments.

Examples:

Deploy a group of flows to a work pool:

from prefect import deploy, flow

@flow(log_prints=True)
def local_flow():
    print("I'm a locally defined flow!")

if __name__ == "__main__":
    deploy(
        local_flow.to_deployment(name="example-deploy-local-flow"),
        flow.from_source(
            source="https://github.com/org/repo.git",
            entrypoint="flows.py:my_flow",
        ).to_deployment(
            name="example-deploy-remote-flow",
        ),
        work_pool_name="my-work-pool",
        image="my-registry/my-image:dev",
    )
Source code in src/prefect/deployments/runner.py
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
@sync_compatible
async def deploy(
    *deployments: RunnerDeployment,
    work_pool_name: Optional[str] = None,
    image: Optional[Union[str, DockerImage]] = None,
    build: bool = True,
    push: bool = True,
    print_next_steps_message: bool = True,
    ignore_warnings: bool = False,
) -> List[UUID]:
    """
    Deploy the provided list of deployments to dynamic infrastructure via a
    work pool.

    By default, calling this function will build a Docker image for the deployments, push it to a
    registry, and create each deployment via the Prefect API that will run the corresponding
    flow on the given schedule.

    If you want to use an existing image, you can pass `build=False` to skip building and pushing
    an image.

    Args:
        *deployments: A list of deployments to deploy.
        work_pool_name: The name of the work pool to use for these deployments. Defaults to
            the value of `PREFECT_DEFAULT_WORK_POOL_NAME`.
        image: The name of the Docker image to build, including the registry and
            repository. Pass a DockerImage instance to customize the Dockerfile used
            and build arguments.
        build: Whether or not to build a new image for the flow. If False, the provided
            image will be used as-is and pulled at runtime.
        push: Whether or not to skip pushing the built image to a registry.
        print_next_steps_message: Whether or not to print a message with next steps
            after deploying the deployments.

    Returns:
        A list of deployment IDs for the created/updated deployments.

    Examples:
        Deploy a group of flows to a work pool:

        ```python
        from prefect import deploy, flow

        @flow(log_prints=True)
        def local_flow():
            print("I'm a locally defined flow!")

        if __name__ == "__main__":
            deploy(
                local_flow.to_deployment(name="example-deploy-local-flow"),
                flow.from_source(
                    source="https://github.com/org/repo.git",
                    entrypoint="flows.py:my_flow",
                ).to_deployment(
                    name="example-deploy-remote-flow",
                ),
                work_pool_name="my-work-pool",
                image="my-registry/my-image:dev",
            )
        ```
    """
    work_pool_name = work_pool_name or PREFECT_DEFAULT_WORK_POOL_NAME.value()

    if not image and not all(
        d.storage or d.entrypoint_type == EntrypointType.MODULE_PATH
        for d in deployments
    ):
        raise ValueError(
            "Either an image or remote storage location must be provided when deploying"
            " a deployment."
        )

    if not work_pool_name:
        raise ValueError(
            "A work pool name must be provided when deploying a deployment. Either"
            " provide a work pool name when calling `deploy` or set"
            " `PREFECT_DEFAULT_WORK_POOL_NAME` in your profile."
        )

    if image and isinstance(image, str):
        image_name, image_tag = parse_image_tag(image)
        image = DockerImage(name=image_name, tag=image_tag)

    try:
        async with get_client() as client:
            work_pool = await client.read_work_pool(work_pool_name)
    except ObjectNotFound as exc:
        raise ValueError(
            f"Could not find work pool {work_pool_name!r}. Please create it before"
            " deploying this flow."
        ) from exc

    is_docker_based_work_pool = get_from_dict(
        work_pool.base_job_template, "variables.properties.image", False
    )
    is_block_based_work_pool = get_from_dict(
        work_pool.base_job_template, "variables.properties.block", False
    )
    # carve out an exception for block based work pools that only have a block in their base job template
    console = Console()
    if not is_docker_based_work_pool and not is_block_based_work_pool:
        if image:
            raise ValueError(
                f"Work pool {work_pool_name!r} does not support custom Docker images."
                " Please use a work pool with an `image` variable in its base job template"
                " or specify a remote storage location for the flow with `.from_source`."
                " If you are attempting to deploy a flow to a local process work pool,"
                " consider using `flow.serve` instead. See the documentation for more"
                " information: https://docs.prefect.io/latest/concepts/flows/#serving-a-flow"
            )
        elif work_pool.type == "process" and not ignore_warnings:
            console.print(
                "Looks like you're deploying to a process work pool. If you're creating a"
                " deployment for local development, calling `.serve` on your flow is a great"
                " way to get started. See the documentation for more information:"
                " https://docs.prefect.io/latest/concepts/flows/#serving-a-flow. "
                " Set `ignore_warnings=True` to suppress this message.",
                style="yellow",
            )

    is_managed_pool = work_pool.is_managed_pool
    if is_managed_pool:
        build = False
        push = False

    if image and build:
        with Progress(
            SpinnerColumn(),
            TextColumn(f"Building image {image.reference}..."),
            transient=True,
            console=console,
        ) as progress:
            docker_build_task = progress.add_task("docker_build", total=1)
            image.build()

            progress.update(docker_build_task, completed=1)
            console.print(
                f"Successfully built image {image.reference!r}", style="green"
            )

    if image and build and push:
        with Progress(
            SpinnerColumn(),
            TextColumn("Pushing image..."),
            transient=True,
            console=console,
        ) as progress:
            docker_push_task = progress.add_task("docker_push", total=1)

            image.push()

            progress.update(docker_push_task, completed=1)

        console.print(f"Successfully pushed image {image.reference!r}", style="green")

    deployment_exceptions = []
    deployment_ids = []
    image_ref = image.reference if image else None
    for deployment in track(
        deployments,
        description="Creating/updating deployments...",
        console=console,
        transient=True,
    ):
        try:
            deployment_ids.append(
                await deployment.apply(image=image_ref, work_pool_name=work_pool_name)
            )
        except Exception as exc:
            if len(deployments) == 1:
                raise
            deployment_exceptions.append({"deployment": deployment, "exc": exc})

    if deployment_exceptions:
        console.print(
            "Encountered errors while creating/updating deployments:\n",
            style="orange_red1",
        )
    else:
        console.print("Successfully created/updated all deployments!\n", style="green")

    complete_failure = len(deployment_exceptions) == len(deployments)

    table = Table(
        title="Deployments",
        show_lines=True,
    )

    table.add_column(header="Name", style="blue", no_wrap=True)
    table.add_column(header="Status", style="blue", no_wrap=True)
    table.add_column(header="Details", style="blue")

    for deployment in deployments:
        errored_deployment = next(
            (d for d in deployment_exceptions if d["deployment"] == deployment),
            None,
        )
        if errored_deployment:
            table.add_row(
                f"{deployment.flow_name}/{deployment.name}",
                "failed",
                str(errored_deployment["exc"]),
                style="red",
            )
        else:
            table.add_row(f"{deployment.flow_name}/{deployment.name}", "applied")
    console.print(table)

    if print_next_steps_message and not complete_failure:
        if not work_pool.is_push_pool and not work_pool.is_managed_pool:
            console.print(
                "\nTo execute flow runs from these deployments, start a worker in a"
                " separate terminal that pulls work from the"
                f" {work_pool_name!r} work pool:"
            )
            console.print(
                f"\n\t$ prefect worker start --pool {work_pool_name!r}",
                style="blue",
            )
        console.print(
            "\nTo trigger any of these deployments, use the"
            " following command:\n[blue]\n\t$ prefect deployment run"
            " [DEPLOYMENT_NAME]\n[/]"
        )

        if PREFECT_UI_URL:
            console.print(
                "\nYou can also trigger your deployments via the Prefect UI:"
                f" [blue]{PREFECT_UI_URL.value()}/deployments[/]\n"
            )

    return deployment_ids