prefect_gcp.bigquery
Tasks for interacting with GCP BigQuery
BigQueryWarehouse
Bases: DatabaseBlock
A block for querying a database with BigQuery.
Upon instantiating, a connection to BigQuery is established and maintained for the life of the object until the close method is called.
It is recommended to use this block as a context manager, which will automatically close the connection and its cursors when the context is exited.
It is also recommended that this block is loaded and consumed within a single task or flow because if the block is passed across separate tasks and flows, the state of the block's connection and cursor could be lost.
Attributes:
Name | Type | Description |
---|---|---|
gcp_credentials |
GcpCredentials
|
The credentials to use to authenticate. |
fetch_size |
int
|
The number of rows to fetch at a time when calling fetch_many.
Note, this parameter is executed on the client side and is not
passed to the database. To limit on the server side, add the |
Source code in prefect_gcp/bigquery.py
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
|
__enter__()
Start a connection upon entry.
Source code in prefect_gcp/bigquery.py
925 926 927 928 929 |
|
__exit__(*args)
Closes connection and its cursors upon exit.
Source code in prefect_gcp/bigquery.py
931 932 933 934 935 |
|
__getstate__()
Source code in prefect_gcp/bigquery.py
937 938 939 940 941 |
|
__setstate__(data)
Source code in prefect_gcp/bigquery.py
943 944 945 946 947 |
|
close()
Closes connection and its cursors.
Source code in prefect_gcp/bigquery.py
914 915 916 917 918 919 920 921 922 923 |
|
execute(operation, parameters=None, **execution_options)
async
Executes an operation on the database. This method is intended to be used for operations that do not return data, such as INSERT, UPDATE, or DELETE.
Unlike the fetch methods, this method will always execute the operation upon calling.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
operation |
str
|
The SQL query or other operation to be executed. |
required |
parameters |
Optional[Dict[str, Any]]
|
The parameters for the operation. |
None
|
**execution_options |
Dict[str, Any]
|
Additional options to pass to |
{}
|
Examples:
Execute operation with parameters:
from prefect_gcp.bigquery import BigQueryWarehouse
with BigQueryWarehouse.load("BLOCK_NAME") as warehouse:
operation = '''
CREATE TABLE mydataset.trips AS (
SELECT
bikeid,
start_time,
duration_minutes
FROM
bigquery-public-data.austin_bikeshare.bikeshare_trips
LIMIT %(limit)s
);
'''
warehouse.execute(operation, parameters={"limit": 5})
Source code in prefect_gcp/bigquery.py
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 |
|
execute_many(operation, seq_of_parameters)
async
Executes many operations on the database. This method is intended to be used for operations that do not return data, such as INSERT, UPDATE, or DELETE.
Unlike the fetch methods, this method will always execute the operations upon calling.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
operation |
str
|
The SQL query or other operation to be executed. |
required |
seq_of_parameters |
List[Dict[str, Any]]
|
The sequence of parameters for the operation. |
required |
Examples:
Create mytable in mydataset and insert two rows into it:
from prefect_gcp.bigquery import BigQueryWarehouse
with BigQueryWarehouse.load("bigquery") as warehouse:
create_operation = '''
CREATE TABLE IF NOT EXISTS mydataset.mytable (
col1 STRING,
col2 INTEGER,
col3 BOOLEAN
)
'''
warehouse.execute(create_operation)
insert_operation = '''
INSERT INTO mydataset.mytable (col1, col2, col3) VALUES (%s, %s, %s)
'''
seq_of_parameters = [
("a", 1, True),
("b", 2, False),
]
warehouse.execute_many(
insert_operation,
seq_of_parameters=seq_of_parameters
)
Source code in prefect_gcp/bigquery.py
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 |
|
fetch_all(operation, parameters=None, **execution_options)
async
Fetch all results from the database.
Repeated calls using the same inputs to any of the fetch methods of this block will skip executing the operation again, and instead, return the next set of results from the previous execution, until the reset_cursors method is called.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
operation |
str
|
The SQL query or other operation to be executed. |
required |
parameters |
Optional[Dict[str, Any]]
|
The parameters for the operation. |
None
|
**execution_options |
Dict[str, Any]
|
Additional options to pass to |
{}
|
Returns:
Type | Description |
---|---|
List[Row]
|
A list of tuples containing the data returned by the database, where each row is a tuple and each column is a value in the tuple. |
Examples:
Execute operation with parameters, fetching all rows:
from prefect_gcp.bigquery import BigQueryWarehouse
with BigQueryWarehouse.load("BLOCK_NAME") as warehouse:
operation = '''
SELECT word, word_count
FROM `bigquery-public-data.samples.shakespeare`
WHERE corpus = %(corpus)s
AND word_count >= %(min_word_count)s
ORDER BY word_count DESC
LIMIT 3;
'''
parameters = {
"corpus": "romeoandjuliet",
"min_word_count": 250,
}
result = warehouse.fetch_all(operation, parameters=parameters)
Source code in prefect_gcp/bigquery.py
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
|
fetch_many(operation, parameters=None, size=None, **execution_options)
async
Fetch a limited number of results from the database.
Repeated calls using the same inputs to any of the fetch methods of this block will skip executing the operation again, and instead, return the next set of results from the previous execution, until the reset_cursors method is called.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
operation |
str
|
The SQL query or other operation to be executed. |
required |
parameters |
Optional[Dict[str, Any]]
|
The parameters for the operation. |
None
|
size |
Optional[int]
|
The number of results to return; if None or 0, uses the value of
|
None
|
**execution_options |
Dict[str, Any]
|
Additional options to pass to |
{}
|
Returns:
Type | Description |
---|---|
List[Row]
|
A list of tuples containing the data returned by the database, where each row is a tuple and each column is a value in the tuple. |
Examples:
Execute operation with parameters, fetching two new rows at a time:
from prefect_gcp.bigquery import BigQueryWarehouse
with BigQueryWarehouse.load("BLOCK_NAME") as warehouse:
operation = '''
SELECT word, word_count
FROM `bigquery-public-data.samples.shakespeare`
WHERE corpus = %(corpus)s
AND word_count >= %(min_word_count)s
ORDER BY word_count DESC
LIMIT 6;
'''
parameters = {
"corpus": "romeoandjuliet",
"min_word_count": 250,
}
for _ in range(0, 3):
result = warehouse.fetch_many(
operation,
parameters=parameters,
size=2
)
print(result)
Source code in prefect_gcp/bigquery.py
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
|
fetch_one(operation, parameters=None, **execution_options)
async
Fetch a single result from the database.
Repeated calls using the same inputs to any of the fetch methods of this block will skip executing the operation again, and instead, return the next set of results from the previous execution, until the reset_cursors method is called.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
operation |
str
|
The SQL query or other operation to be executed. |
required |
parameters |
Optional[Dict[str, Any]]
|
The parameters for the operation. |
None
|
**execution_options |
Dict[str, Any]
|
Additional options to pass to |
{}
|
Returns:
Type | Description |
---|---|
Row
|
A tuple containing the data returned by the database, where each row is a tuple and each column is a value in the tuple. |
Examples:
Execute operation with parameters, fetching one new row at a time:
from prefect_gcp.bigquery import BigQueryWarehouse
with BigQueryWarehouse.load("BLOCK_NAME") as warehouse:
operation = '''
SELECT word, word_count
FROM `bigquery-public-data.samples.shakespeare`
WHERE corpus = %(corpus)s
AND word_count >= %(min_word_count)s
ORDER BY word_count DESC
LIMIT 3;
'''
parameters = {
"corpus": "romeoandjuliet",
"min_word_count": 250,
}
for _ in range(0, 3):
result = warehouse.fetch_one(operation, parameters=parameters)
print(result)
Source code in prefect_gcp/bigquery.py
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
|
get_connection()
Get the opened connection to BigQuery.
Source code in prefect_gcp/bigquery.py
588 589 590 591 592 |
|
reset_cursors()
Tries to close all opened cursors.
Source code in prefect_gcp/bigquery.py
619 620 621 622 623 624 625 626 627 628 629 630 631 |
|
bigquery_create_table(dataset, table, gcp_credentials, schema=None, clustering_fields=None, time_partitioning=None, project=None, location='US', external_config=None)
async
Creates table in BigQuery.
Args:
dataset: Name of a dataset in that the table will be created.
table: Name of a table to create.
schema: Schema to use when creating the table.
gcp_credentials: Credentials to use for authentication with GCP.
clustering_fields: List of fields to cluster the table by.
time_partitioning: bigquery.TimePartitioning
object specifying a partitioning
of the newly created table
project: Project to initialize the BigQuery Client with; if
not provided, will default to the one inferred from your credentials.
location: The location of the dataset that will be written to.
external_config: The external data source. # noqa
Returns:
Table name.
Example:
```python
from prefect import flow
from prefect_gcp import GcpCredentials
from prefect_gcp.bigquery import bigquery_create_table
from google.cloud.bigquery import SchemaField
@flow
def example_bigquery_create_table_flow():
gcp_credentials = GcpCredentials(project="project")
schema = [
SchemaField("number", field_type="INTEGER", mode="REQUIRED"),
SchemaField("text", field_type="STRING", mode="REQUIRED"),
SchemaField("bool", field_type="BOOLEAN")
]
result = bigquery_create_table(
dataset="dataset",
table="test_table",
schema=schema,
gcp_credentials=gcp_credentials
)
return result
example_bigquery_create_table_flow()
```
Source code in prefect_gcp/bigquery.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
|
bigquery_insert_stream(dataset, table, records, gcp_credentials, project=None, location='US')
async
Insert records in a Google BigQuery table via the streaming API.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
str
|
Name of a dataset where the records will be written to. |
required |
table |
str
|
Name of a table to write to. |
required |
records |
List[dict]
|
The list of records to insert as rows into the BigQuery table; each item in the list should be a dictionary whose keys correspond to columns in the table. |
required |
gcp_credentials |
GcpCredentials
|
Credentials to use for authentication with GCP. |
required |
project |
Optional[str]
|
The project to initialize the BigQuery Client with; if not provided, will default to the one inferred from your credentials. |
None
|
location |
str
|
Location of the dataset that will be written to. |
'US'
|
Returns:
Type | Description |
---|---|
List
|
List of inserted rows. |
Example
from prefect import flow
from prefect_gcp import GcpCredentials
from prefect_gcp.bigquery import bigquery_insert_stream
from google.cloud.bigquery import SchemaField
@flow
def example_bigquery_insert_stream_flow():
gcp_credentials = GcpCredentials(project="project")
records = [
{"number": 1, "text": "abc", "bool": True},
{"number": 2, "text": "def", "bool": False},
]
result = bigquery_insert_stream(
dataset="integrations",
table="test_table",
records=records,
gcp_credentials=gcp_credentials
)
return result
example_bigquery_insert_stream_flow()
Source code in prefect_gcp/bigquery.py
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
bigquery_load_cloud_storage(dataset, table, uri, gcp_credentials, schema=None, job_config=None, project=None, location='US')
async
Run method for this Task. Invoked by calling this Task within a Flow context, after initialization. Args: uri: GCS path to load data from. dataset: The id of a destination dataset to write the records to. table: The name of a destination table to write the records to. gcp_credentials: Credentials to use for authentication with GCP. schema: The schema to use when creating the table. job_config: Dictionary of job configuration parameters; note that the parameters provided here must be pickleable (e.g., dataset references will be rejected). project: The project to initialize the BigQuery Client with; if not provided, will default to the one inferred from your credentials. location: Location of the dataset that will be written to.
Returns:
Type | Description |
---|---|
LoadJob
|
The response from |
Example
from prefect import flow
from prefect_gcp import GcpCredentials
from prefect_gcp.bigquery import bigquery_load_cloud_storage
@flow
def example_bigquery_load_cloud_storage_flow():
gcp_credentials = GcpCredentials(project="project")
result = bigquery_load_cloud_storage(
dataset="dataset",
table="test_table",
uri="uri",
gcp_credentials=gcp_credentials
)
return result
example_bigquery_load_cloud_storage_flow()
Source code in prefect_gcp/bigquery.py
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
|
bigquery_load_file(dataset, table, path, gcp_credentials, schema=None, job_config=None, rewind=False, size=None, project=None, location='US')
async
Loads file into BigQuery.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
str
|
ID of a destination dataset to write the records to; if not provided here, will default to the one provided at initialization. |
required |
table |
str
|
Name of a destination table to write the records to; if not provided here, will default to the one provided at initialization. |
required |
path |
Union[str, Path]
|
A string or path-like object of the file to be loaded. |
required |
gcp_credentials |
GcpCredentials
|
Credentials to use for authentication with GCP. |
required |
schema |
Optional[List[SchemaField]]
|
Schema to use when creating the table. |
None
|
job_config |
Optional[dict]
|
An optional dictionary of job configuration parameters; note that the parameters provided here must be pickleable (e.g., dataset references will be rejected). |
None
|
rewind |
bool
|
if True, seek to the beginning of the file handle before reading the file. |
False
|
size |
Optional[int]
|
Number of bytes to read from the file handle. If size is None or large, resumable upload will be used. Otherwise, multipart upload will be used. |
None
|
project |
Optional[str]
|
Project to initialize the BigQuery Client with; if not provided, will default to the one inferred from your credentials. |
None
|
location |
str
|
location of the dataset that will be written to. |
'US'
|
Returns:
Type | Description |
---|---|
LoadJob
|
The response from |
Example
from prefect import flow
from prefect_gcp import GcpCredentials
from prefect_gcp.bigquery import bigquery_load_file
from google.cloud.bigquery import SchemaField
@flow
def example_bigquery_load_file_flow():
gcp_credentials = GcpCredentials(project="project")
result = bigquery_load_file(
dataset="dataset",
table="test_table",
path="path",
gcp_credentials=gcp_credentials
)
return result
example_bigquery_load_file_flow()
Source code in prefect_gcp/bigquery.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
|
bigquery_query(query, gcp_credentials, query_params=None, dry_run_max_bytes=None, dataset=None, table=None, to_dataframe=False, job_config=None, project=None, result_transformer=None, location='US')
async
Runs a BigQuery query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
str
|
String of the query to execute. |
required |
gcp_credentials |
GcpCredentials
|
Credentials to use for authentication with GCP. |
required |
query_params |
Optional[List[tuple]]
|
List of 3-tuples specifying BigQuery query parameters; currently only scalar query parameters are supported. See the Google documentation for more details on how both the query and the query parameters should be formatted. |
None
|
dry_run_max_bytes |
Optional[int]
|
If provided, the maximum number of bytes the query
is allowed to process; this will be determined by executing a dry run
and raising a |
None
|
dataset |
Optional[str]
|
Name of a destination dataset to write the query results to,
if you don't want them returned; if provided, |
None
|
table |
Optional[str]
|
Name of a destination table to write the query results to,
if you don't want them returned; if provided, |
None
|
to_dataframe |
bool
|
If provided, returns the results of the query as a pandas
dataframe instead of a list of |
False
|
job_config |
Optional[dict]
|
Dictionary of job configuration parameters; note that the parameters provided here must be pickleable (e.g., dataset references will be rejected). |
None
|
project |
Optional[str]
|
The project to initialize the BigQuery Client with; if not provided, will default to the one inferred from your credentials. |
None
|
result_transformer |
Optional[Callable[[List[Row]], Any]]
|
Function that can be passed to transform the result of a query before returning. The function will be passed the list of rows returned by BigQuery for the given query. |
None
|
location |
str
|
Location of the dataset that will be queried. |
'US'
|
Returns:
Type | Description |
---|---|
Any
|
A list of rows, or pandas DataFrame if to_dataframe, |
Any
|
matching the query criteria. |
Example
Queries the public names database, returning 10 results.
from prefect import flow
from prefect_gcp import GcpCredentials
from prefect_gcp.bigquery import bigquery_query
@flow
def example_bigquery_query_flow():
gcp_credentials = GcpCredentials(
service_account_file="/path/to/service/account/keyfile.json",
project="project"
)
query = '''
SELECT word, word_count
FROM `bigquery-public-data.samples.shakespeare`
WHERE corpus = @corpus
AND word_count >= @min_word_count
ORDER BY word_count DESC;
'''
query_params = [
("corpus", "STRING", "romeoandjuliet"),
("min_word_count", "INT64", 250)
]
result = bigquery_query(
query, gcp_credentials, query_params=query_params
)
return result
example_bigquery_query_flow()
Source code in prefect_gcp/bigquery.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|