prefect_databricks.flows
Module containing flows for interacting with Databricks
DatabricksJobInternalError
Bases: Exception
Raised when Databricks jobs runs submit encounters internal error
Source code in prefect_databricks/flows.py
39 40 |
|
DatabricksJobRunTimedOut
Bases: Exception
Raised when Databricks jobs runs does not complete in the configured max wait seconds
Source code in prefect_databricks/flows.py
43 44 45 46 47 |
|
DatabricksJobSkipped
Bases: Exception
Raised when Databricks jobs runs submit skips
Source code in prefect_databricks/flows.py
35 36 |
|
DatabricksJobTerminated
Bases: Exception
Raised when Databricks jobs runs submit terminates
Source code in prefect_databricks/flows.py
31 32 |
|
jobs_runs_submit_and_wait_for_completion(databricks_credentials, tasks=None, run_name=None, max_wait_seconds=900, poll_frequency_seconds=10, git_source=None, timeout_seconds=None, idempotency_token=None, access_control_list=None, return_metadata=False, job_submission_handler=None, **jobs_runs_submit_kwargs)
async
Flow that triggers a job run and waits for the triggered run to complete.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
databricks_credentials |
DatabricksCredentials
|
Credentials to use for authentication with Databricks. |
required |
tasks |
Optional[List[RunSubmitTaskSettings]]
|
Tasks to run, e.g.
|
None
|
run_name |
Optional[str]
|
An optional name for the run. The default value is |
None
|
git_source |
Optional[GitSource]
|
This functionality is in Public Preview. An optional specification for
a remote repository containing the notebooks used by this
job's notebook tasks. Key-values:
- git_url:
URL of the repository to be cloned by this job. The maximum
length is 300 characters, e.g.
|
None
|
timeout_seconds |
Optional[int]
|
An optional timeout applied to each run of this job. The default
behavior is to have no timeout, e.g. |
None
|
idempotency_token |
Optional[str]
|
An optional token that can be used to guarantee the idempotency of job
run requests. If a run with the provided token already
exists, the request does not create a new run but returns
the ID of the existing run instead. If a run with the
provided token is deleted, an error is returned. If you
specify the idempotency token, upon failure you can retry
until the request succeeds. Databricks guarantees that
exactly one run is launched with that idempotency token.
This token must have at most 64 characters. For more
information, see How to ensure idempotency for
jobs,
e.g. |
None
|
access_control_list |
Optional[List[AccessControlRequest]]
|
List of permissions to set on the job. |
None
|
max_wait_seconds |
int
|
Maximum number of seconds to wait for the entire flow to complete. |
900
|
poll_frequency_seconds |
int
|
Number of seconds to wait in between checks for run completion. |
10
|
return_metadata |
bool
|
When True, method will return a tuple of notebook output as well as job run metadata; by default though, the method only returns notebook output |
False
|
job_submission_handler |
Optional[Callable]
|
An optional callable to intercept job submission. |
None
|
**jobs_runs_submit_kwargs |
Dict[str, Any]
|
Additional keyword arguments to pass to |
{}
|
Returns:
Type | Description |
---|---|
Union[NotebookOutput, Tuple[NotebookOutput, JobMetadata], None]
|
Either a dict or a tuple (depends on |
Union[NotebookOutput, Tuple[NotebookOutput, JobMetadata], None]
|
|
Union[NotebookOutput, Tuple[NotebookOutput, JobMetadata], None]
|
|
Examples:
Submit jobs runs and wait.
from prefect import flow
from prefect_databricks import DatabricksCredentials
from prefect_databricks.flows import jobs_runs_submit_and_wait_for_completion
from prefect_databricks.models.jobs import (
AutoScale,
AwsAttributes,
JobTaskSettings,
NotebookTask,
NewCluster,
)
@flow
def jobs_runs_submit_and_wait_for_completion_flow(notebook_path, **base_parameters):
databricks_credentials = await DatabricksCredentials.load("BLOCK_NAME")
# specify new cluster settings
aws_attributes = AwsAttributes(
availability="SPOT",
zone_id="us-west-2a",
ebs_volume_type="GENERAL_PURPOSE_SSD",
ebs_volume_count=3,
ebs_volume_size=100,
)
auto_scale = AutoScale(min_workers=1, max_workers=2)
new_cluster = NewCluster(
aws_attributes=aws_attributes,
autoscale=auto_scale,
node_type_id="m4.large",
spark_version="10.4.x-scala2.12",
spark_conf={"spark.speculation": True},
)
# specify notebook to use and parameters to pass
notebook_task = NotebookTask(
notebook_path=notebook_path,
base_parameters=base_parameters,
)
# compile job task settings
job_task_settings = JobTaskSettings(
new_cluster=new_cluster,
notebook_task=notebook_task,
task_key="prefect-task"
)
multi_task_runs = jobs_runs_submit_and_wait_for_completion(
databricks_credentials=databricks_credentials,
run_name="prefect-job",
tasks=[job_task_settings]
)
return multi_task_runs
Source code in prefect_databricks/flows.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
|
jobs_runs_submit_by_id_and_wait_for_completion(databricks_credentials, job_id, idempotency_token=None, jar_params=None, max_wait_seconds=900, poll_frequency_seconds=10, notebook_params=None, python_params=None, spark_submit_params=None, python_named_params=None, pipeline_params=None, sql_params=None, dbt_commands=None, job_submission_handler=None, **jobs_runs_submit_kwargs)
async
flow that triggers an existing job and waits for its completion
Parameters:
Name | Type | Description | Default |
---|---|---|---|
databricks_credentials |
DatabricksCredentials
|
Credentials to use for authentication with Databricks. |
required |
job_id |
int
|
Id of the databricks job. |
required |
idempotency_token |
Optional[str]
|
An optional token that can be used to guarantee the idempotency of job
run requests. If a run with the provided token already
exists, the request does not create a new run but returns
the ID of the existing run instead. If a run with the
provided token is deleted, an error is returned. If you
specify the idempotency token, upon failure you can retry
until the request succeeds. Databricks guarantees that
exactly one run is launched with that idempotency token.
This token must have at most 64 characters. For more
information, see How to ensure idempotency for
jobs,
e.g. |
None
|
jar_params |
Optional[List[str]]
|
A list of parameters for jobs with Spark JAR tasks, for example "jar_params" : ["john doe", "35"]. The parameters are used to invoke the main function of the main class specified in the Spark JAR task. If not specified upon run- now, it defaults to an empty list. jar_params cannot be specified in conjunction with notebook_params. The JSON representation of this field (for example {"jar_params": ["john doe","35"]}) cannot exceed 10,000 bytes. |
None
|
max_wait_seconds |
int
|
Maximum number of seconds to wait for the entire flow to complete. |
900
|
poll_frequency_seconds |
int
|
Number of seconds to wait in between checks for run completion. |
10
|
notebook_params |
Optional[Dict]
|
A map from keys to values for jobs with notebook task, for example "notebook_params": {"name": "john doe", "age": "35"}. The map is passed to the notebook and is accessible through the dbutils.widgets.get function. If not specified upon run-now, the triggered run uses the job’s base parameters. notebook_params cannot be specified in conjunction with jar_params. Use Task parameter variables to set parameters containing information about job runs. The JSON representation of this field (for example {"notebook_params":{"name":"john doe","age":"35"}}) cannot exceed 10,000 bytes. |
None
|
python_params |
Optional[List[str]]
|
A list of parameters for jobs with Python tasks, for example "python_params" :["john doe", "35"]. The parameters are passed to Python file as command- line parameters. If specified upon run-now, it would overwrite the parameters specified in job setting. The JSON representation of this field (for example {"python_params":["john doe","35"]}) cannot exceed 10,000 bytes Use Task parameter variables to set parameters containing information about job runs. These parameters accept only Latin characters (ASCII character set). Using non-ASCII characters returns an error. Examples of invalid, non-ASCII characters are Chinese, Japanese kanjis, and emojis. |
None
|
spark_submit_params |
Optional[List[str]]
|
A list of parameters for jobs with spark submit task, for example "spark_submit_params": ["--class", "org.apache.spark.examples.SparkPi"]. The parameters are passed to spark-submit script as command-line parameters. If specified upon run-now, it would overwrite the parameters specified in job setting. The JSON representation of this field (for example {"python_params":["john doe","35"]}) cannot exceed 10,000 bytes. Use Task parameter variables to set parameters containing information about job runs. These parameters accept only Latin characters (ASCII character set). Using non-ASCII characters returns an error. Examples of invalid, non-ASCII characters are Chinese, Japanese kanjis, and emojis. |
None
|
python_named_params |
Optional[Dict]
|
A map from keys to values for jobs with Python wheel task, for example "python_named_params": {"name": "task", "data": "dbfs:/path/to/data.json"}. |
None
|
pipeline_params |
Optional[str]
|
If
|
None
|
sql_params |
Optional[Dict]
|
A map from keys to values for SQL tasks, for example "sql_params": {"name": "john doe", "age": "35"}. The SQL alert task does not support custom parameters. |
None
|
dbt_commands |
Optional[List]
|
An array of commands to execute for jobs with the dbt task, for example "dbt_commands": ["dbt deps", "dbt seed", "dbt run"] |
None
|
job_submission_handler |
Optional[Callable]
|
An optional callable to intercept job submission |
None
|
Raises:
Type | Description |
---|---|
DatabricksJobTerminated
|
Raised when the Databricks job run is terminated with a non-successful result state. |
DatabricksJobSkipped
|
Raised when the Databricks job run is skipped. |
DatabricksJobInternalError
|
Raised when the Databricks job run encounters an internal error. |
Returns:
Name | Type | Description |
---|---|---|
Dict |
Dict
|
A dictionary containing information about the completed job run. |
Example
from prefect import flow
from prefect_databricks import DatabricksCredentials
from prefect_databricks.flows import (
jobs_runs_submit_by_id_and_wait_for_completion,
)
@flow
def submit_existing_job(block_name: str, job_id):
databricks_credentials = DatabricksCredentials.load(block_name)
run = jobs_runs_submit_by_id_and_wait_for_completion(
databricks_credentials=databricks_credentials, job_id=job_id
)
return run
submit_existing_job(block_name="db-creds", job_id=db_job_id)
Source code in prefect_databricks/flows.py
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
|
jobs_runs_wait_for_completion(multi_task_jobs_runs_id, databricks_credentials, run_name=None, max_wait_seconds=900, poll_frequency_seconds=10)
async
Flow that triggers a job run and waits for the triggered run to complete.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_name |
Optional[str]
|
The name of the jobs runs task. |
None
|
multi_task_jobs_run_id |
The ID of the jobs runs task to watch. |
required | |
databricks_credentials |
DatabricksCredentials
|
Credentials to use for authentication with Databricks. |
required |
max_wait_seconds |
int
|
Maximum number of seconds to wait for the entire flow to complete. |
900
|
poll_frequency_seconds |
int
|
Number of seconds to wait in between checks for run completion. |
10
|
Returns:
Name | Type | Description |
---|---|---|
jobs_runs_state |
A dict containing the jobs runs life cycle state and message. |
|
jobs_runs_metadata |
A dict containing IDs of the jobs runs tasks. |
Example
Waits for completion on jobs runs.
from prefect import flow
from prefect_databricks import DatabricksCredentials
from prefect_databricks.flows import jobs_runs_wait_for_completion
@flow
def jobs_runs_wait_for_completion_flow():
databricks_credentials = DatabricksCredentials.load("BLOCK_NAME")
return jobs_runs_wait_for_completion(
multi_task_jobs_run_id=45429,
databricks_credentials=databricks_credentials,
run_name="my_run_name",
max_wait_seconds=1800, # 30 minutes
poll_frequency_seconds=120, # 2 minutes
)
Source code in prefect_databricks/flows.py
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|