Skip to content

prefect_dask.task_runners

Interface and implementations of the Dask Task Runner. Task Runners in Prefect are responsible for managing the execution of Prefect task runs. Generally speaking, users are not expected to interact with task runners outside of configuring and initializing them for a flow.

Example
import time

from prefect import flow, task

@task
def shout(number):
    time.sleep(0.5)
    print(f"#{number}")

@flow
def count_to(highest_number):
    for number in range(highest_number):
        shout.submit(number)

if __name__ == "__main__":
    count_to(10)

# outputs
#0
#1
#2
#3
#4
#5
#6
#7
#8
#9

Switching to a DaskTaskRunner:

import time

from prefect import flow, task
from prefect_dask import DaskTaskRunner

@task
def shout(number):
    time.sleep(0.5)
    print(f"#{number}")

@flow(task_runner=DaskTaskRunner)
def count_to(highest_number):
    for number in range(highest_number):
        shout.submit(number)

if __name__ == "__main__":
    count_to(10)

# outputs
#3
#7
#2
#6
#4
#0
#1
#5
#8
#9

DaskTaskRunner

Bases: TaskRunner

A parallel task_runner that submits tasks to the dask.distributed scheduler. By default a temporary distributed.LocalCluster is created (and subsequently torn down) within the start() contextmanager. To use a different cluster class (e.g. dask_kubernetes.KubeCluster), you can specify cluster_class/cluster_kwargs.

Alternatively, if you already have a dask cluster running, you can provide the cluster object via the cluster kwarg or the address of the scheduler via the address kwarg.

Multiprocessing safety

Note that, because the DaskTaskRunner uses multiprocessing, calls to flows in scripts must be guarded with if __name__ == "__main__": or warnings will be displayed.

Parameters:

Name Type Description Default
cluster Cluster

Currently running dask cluster; if one is not provider (or specified via address kwarg), a temporary cluster will be created in DaskTaskRunner.start(). Defaults to None.

None
address string

Address of a currently running dask scheduler. Defaults to None.

None
cluster_class string or callable

The cluster class to use when creating a temporary dask cluster. Can be either the full class name (e.g. "distributed.LocalCluster"), or the class itself.

None
cluster_kwargs dict

Additional kwargs to pass to the cluster_class when creating a temporary dask cluster.

None
adapt_kwargs dict

Additional kwargs to pass to cluster.adapt when creating a temporary dask cluster. Note that adaptive scaling is only enabled if adapt_kwargs are provided.

None
client_kwargs dict

Additional kwargs to use when creating a dask.distributed.Client.

None

Examples:

Using a temporary local dask cluster:

from prefect import flow
from prefect_dask.task_runners import DaskTaskRunner

@flow(task_runner=DaskTaskRunner)
def my_flow():
    ...

Using a temporary cluster running elsewhere. Any Dask cluster class should work, here we use dask-cloudprovider:

DaskTaskRunner(
    cluster_class="dask_cloudprovider.FargateCluster",
    cluster_kwargs={
        "image": "prefecthq/prefect:latest",
        "n_workers": 5,
    },
)

Connecting to an existing dask cluster:

DaskTaskRunner(address="192.0.2.255:8786")
Source code in prefect_dask/task_runners.py
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
class DaskTaskRunner(TaskRunner):
    """
    A parallel task_runner that submits tasks to the `dask.distributed` scheduler.
    By default a temporary `distributed.LocalCluster` is created (and
    subsequently torn down) within the `start()` contextmanager. To use a
    different cluster class (e.g.
    [`dask_kubernetes.KubeCluster`](https://kubernetes.dask.org/)), you can
    specify `cluster_class`/`cluster_kwargs`.

    Alternatively, if you already have a dask cluster running, you can provide
    the cluster object via the `cluster` kwarg or the address of the scheduler
    via the `address` kwarg.
    !!! warning "Multiprocessing safety"
        Note that, because the `DaskTaskRunner` uses multiprocessing, calls to flows
        in scripts must be guarded with `if __name__ == "__main__":` or warnings will
        be displayed.

    Args:
        cluster (distributed.deploy.Cluster, optional): Currently running dask cluster;
            if one is not provider (or specified via `address` kwarg), a temporary
            cluster will be created in `DaskTaskRunner.start()`. Defaults to `None`.
        address (string, optional): Address of a currently running dask
            scheduler. Defaults to `None`.
        cluster_class (string or callable, optional): The cluster class to use
            when creating a temporary dask cluster. Can be either the full
            class name (e.g. `"distributed.LocalCluster"`), or the class itself.
        cluster_kwargs (dict, optional): Additional kwargs to pass to the
            `cluster_class` when creating a temporary dask cluster.
        adapt_kwargs (dict, optional): Additional kwargs to pass to `cluster.adapt`
            when creating a temporary dask cluster. Note that adaptive scaling
            is only enabled if `adapt_kwargs` are provided.
        client_kwargs (dict, optional): Additional kwargs to use when creating a
            [`dask.distributed.Client`](https://distributed.dask.org/en/latest/api.html#client).

    Examples:
        Using a temporary local dask cluster:
        ```python
        from prefect import flow
        from prefect_dask.task_runners import DaskTaskRunner

        @flow(task_runner=DaskTaskRunner)
        def my_flow():
            ...
        ```

        Using a temporary cluster running elsewhere. Any Dask cluster class should
        work, here we use [dask-cloudprovider](https://cloudprovider.dask.org):
        ```python
        DaskTaskRunner(
            cluster_class="dask_cloudprovider.FargateCluster",
            cluster_kwargs={
                "image": "prefecthq/prefect:latest",
                "n_workers": 5,
            },
        )
        ```

        Connecting to an existing dask cluster:
        ```python
        DaskTaskRunner(address="192.0.2.255:8786")
        ```
    """

    def __init__(
        self,
        cluster: Optional[distributed.deploy.Cluster] = None,
        address: Optional[str] = None,
        cluster_class: Union[str, Callable, None] = None,
        cluster_kwargs: Optional[Dict] = None,
        adapt_kwargs: Optional[Dict] = None,
        client_kwargs: Optional[Dict] = None,
    ):
        # Validate settings and infer defaults
        if address:
            if cluster or cluster_class or cluster_kwargs or adapt_kwargs:
                raise ValueError(
                    "Cannot specify `address` and "
                    "`cluster`/`cluster_class`/`cluster_kwargs`/`adapt_kwargs`"
                )
        elif cluster:
            if cluster_class or cluster_kwargs:
                raise ValueError(
                    "Cannot specify `cluster` and `cluster_class`/`cluster_kwargs`"
                )
        else:
            if isinstance(cluster_class, str):
                cluster_class = from_qualified_name(cluster_class)
            else:
                cluster_class = cluster_class

        # Create a copies of incoming kwargs since we may mutate them
        cluster_kwargs = cluster_kwargs.copy() if cluster_kwargs else {}
        adapt_kwargs = adapt_kwargs.copy() if adapt_kwargs else {}
        client_kwargs = client_kwargs.copy() if client_kwargs else {}

        # Update kwargs defaults
        client_kwargs.setdefault("set_as_default", False)

        # The user cannot specify async/sync themselves
        if "asynchronous" in client_kwargs:
            raise ValueError(
                "`client_kwargs` cannot set `asynchronous`. "
                "This option is managed by Prefect."
            )
        if "asynchronous" in cluster_kwargs:
            raise ValueError(
                "`cluster_kwargs` cannot set `asynchronous`. "
                "This option is managed by Prefect."
            )

        # Store settings
        self.address = address
        self.cluster_class = cluster_class
        self.cluster_kwargs = cluster_kwargs
        self.adapt_kwargs = adapt_kwargs
        self.client_kwargs = client_kwargs

        # Runtime attributes
        self._client: PrefectDaskClient = None
        self._cluster: "distributed.deploy.Cluster" = cluster

        self._exit_stack = ExitStack()

        super().__init__()

    def __eq__(self, other: object) -> bool:
        """
        Check if an instance has the same settings as this task runner.
        """
        if isinstance(other, DaskTaskRunner):
            return (
                self.address == other.address
                and self.cluster_class == other.cluster_class
                and self.cluster_kwargs == other.cluster_kwargs
                and self.adapt_kwargs == other.adapt_kwargs
                and self.client_kwargs == other.client_kwargs
            )
        else:
            return False

    def duplicate(self):
        """
        Create a new instance of the task runner with the same settings.
        """
        return type(self)(
            address=self.address,
            cluster_class=self.cluster_class,
            cluster_kwargs=self.cluster_kwargs,
            adapt_kwargs=self.adapt_kwargs,
            client_kwargs=self.client_kwargs,
        )

    @overload
    def submit(
        self,
        task: "Task[P, Coroutine[Any, Any, R]]",
        parameters: Dict[str, Any],
        wait_for: Optional[Iterable[PrefectFuture]] = None,
        dependencies: Optional[Dict[str, Set[TaskRunInput]]] = None,
    ) -> PrefectDaskFuture[R]:
        ...

    @overload
    def submit(
        self,
        task: "Task[Any, R]",
        parameters: Dict[str, Any],
        wait_for: Optional[Iterable[PrefectFuture]] = None,
        dependencies: Optional[Dict[str, Set[TaskRunInput]]] = None,
    ) -> PrefectDaskFuture[R]:
        ...

    def submit(
        self,
        task: Task,
        parameters: Dict[str, Any],
        wait_for: Optional[Iterable[PrefectFuture]] = None,
        dependencies: Optional[Dict[str, Set[TaskRunInput]]] = None,
    ) -> PrefectDaskFuture:
        if not self._started:
            raise RuntimeError(
                "The task runner must be started before submitting work."
            )

        # unpack the upstream call in order to cast Prefect futures to Dask futures
        # where possible to optimize Dask task scheduling
        parameters = self._optimize_futures(parameters)

        future = self._client.submit(
            task,
            parameters=parameters,
            wait_for=wait_for,
            dependencies=dependencies,
            return_type="state",
        )
        return PrefectDaskFuture(wrapped_future=future, task_run_id=future.task_run_id)

    @overload
    def map(
        self,
        task: "Task[P, Coroutine[Any, Any, R]]",
        parameters: Dict[str, Any],
        wait_for: Optional[Iterable[PrefectFuture]] = None,
    ) -> PrefectFutureList[PrefectDaskFuture[R]]:
        ...

    @overload
    def map(
        self,
        task: "Task[Any, R]",
        parameters: Dict[str, Any],
        wait_for: Optional[Iterable[PrefectFuture]] = None,
    ) -> PrefectFutureList[PrefectDaskFuture[R]]:
        ...

    def map(
        self,
        task: "Task",
        parameters: Dict[str, Any],
        wait_for: Optional[Iterable[PrefectFuture]] = None,
    ):
        return super().map(task, parameters, wait_for)

    def _optimize_futures(self, expr):
        def visit_fn(expr):
            if isinstance(expr, PrefectDaskFuture):
                dask_future = expr.wrapped_future
                if dask_future is not None:
                    return dask_future
            # Fallback to return the expression unaltered
            return expr

        return visit_collection(expr, visit_fn=visit_fn, return_data=True)

    def __enter__(self):
        """
        Start the task runner and prep for context exit.
        - Creates a cluster if an external address is not set.
        - Creates a client to connect to the cluster.
        """
        super().__enter__()
        exit_stack = self._exit_stack.__enter__()
        if self._cluster:
            self.logger.info(f"Connecting to existing Dask cluster {self._cluster}")
            self._connect_to = self._cluster
            if self.adapt_kwargs:
                self._cluster.adapt(**self.adapt_kwargs)
        elif self.address:
            self.logger.info(
                f"Connecting to an existing Dask cluster at {self.address}"
            )
            self._connect_to = self.address
        else:
            self.cluster_class = self.cluster_class or distributed.LocalCluster

            self.logger.info(
                f"Creating a new Dask cluster with "
                f"`{to_qualified_name(self.cluster_class)}`"
            )
            self._connect_to = self._cluster = exit_stack.enter_context(
                self.cluster_class(**self.cluster_kwargs)
            )

            if self.adapt_kwargs:
                maybe_coro = self._cluster.adapt(**self.adapt_kwargs)
                if inspect.isawaitable(maybe_coro):
                    run_coro_as_sync(maybe_coro)

        self._client = exit_stack.enter_context(
            PrefectDaskClient(self._connect_to, **self.client_kwargs)
        )

        if self._client.dashboard_link:
            self.logger.info(
                f"The Dask dashboard is available at {self._client.dashboard_link}",
            )

        return self

    def __exit__(self, *args):
        self._exit_stack.__exit__(*args)
        super().__exit__(*args)

__enter__()

Start the task runner and prep for context exit. - Creates a cluster if an external address is not set. - Creates a client to connect to the cluster.

Source code in prefect_dask/task_runners.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def __enter__(self):
    """
    Start the task runner and prep for context exit.
    - Creates a cluster if an external address is not set.
    - Creates a client to connect to the cluster.
    """
    super().__enter__()
    exit_stack = self._exit_stack.__enter__()
    if self._cluster:
        self.logger.info(f"Connecting to existing Dask cluster {self._cluster}")
        self._connect_to = self._cluster
        if self.adapt_kwargs:
            self._cluster.adapt(**self.adapt_kwargs)
    elif self.address:
        self.logger.info(
            f"Connecting to an existing Dask cluster at {self.address}"
        )
        self._connect_to = self.address
    else:
        self.cluster_class = self.cluster_class or distributed.LocalCluster

        self.logger.info(
            f"Creating a new Dask cluster with "
            f"`{to_qualified_name(self.cluster_class)}`"
        )
        self._connect_to = self._cluster = exit_stack.enter_context(
            self.cluster_class(**self.cluster_kwargs)
        )

        if self.adapt_kwargs:
            maybe_coro = self._cluster.adapt(**self.adapt_kwargs)
            if inspect.isawaitable(maybe_coro):
                run_coro_as_sync(maybe_coro)

    self._client = exit_stack.enter_context(
        PrefectDaskClient(self._connect_to, **self.client_kwargs)
    )

    if self._client.dashboard_link:
        self.logger.info(
            f"The Dask dashboard is available at {self._client.dashboard_link}",
        )

    return self

__eq__(other)

Check if an instance has the same settings as this task runner.

Source code in prefect_dask/task_runners.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def __eq__(self, other: object) -> bool:
    """
    Check if an instance has the same settings as this task runner.
    """
    if isinstance(other, DaskTaskRunner):
        return (
            self.address == other.address
            and self.cluster_class == other.cluster_class
            and self.cluster_kwargs == other.cluster_kwargs
            and self.adapt_kwargs == other.adapt_kwargs
            and self.client_kwargs == other.client_kwargs
        )
    else:
        return False

duplicate()

Create a new instance of the task runner with the same settings.

Source code in prefect_dask/task_runners.py
305
306
307
308
309
310
311
312
313
314
315
def duplicate(self):
    """
    Create a new instance of the task runner with the same settings.
    """
    return type(self)(
        address=self.address,
        cluster_class=self.cluster_class,
        cluster_kwargs=self.cluster_kwargs,
        adapt_kwargs=self.adapt_kwargs,
        client_kwargs=self.client_kwargs,
    )

PrefectDaskFuture

Bases: PrefectWrappedFuture[R, Future]

A Prefect future that wraps a distributed.Future. This future is used when the task run is submitted to a DaskTaskRunner.

Source code in prefect_dask/task_runners.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
class PrefectDaskFuture(PrefectWrappedFuture[R, distributed.Future]):
    """
    A Prefect future that wraps a distributed.Future. This future is used
    when the task run is submitted to a DaskTaskRunner.
    """

    def wait(self, timeout: Optional[float] = None) -> None:
        try:
            result = self._wrapped_future.result(timeout=timeout)
        except Exception:
            # either the task failed or the timeout was reached
            return
        if isinstance(result, State):
            self._final_state = result

    def result(
        self,
        timeout: Optional[float] = None,
        raise_on_failure: bool = True,
    ) -> R:
        if not self._final_state:
            try:
                future_result = self._wrapped_future.result(timeout=timeout)
            except distributed.TimeoutError as exc:
                raise TimeoutError(
                    f"Task run {self.task_run_id} did not complete within {timeout} seconds"
                ) from exc

            if isinstance(future_result, State):
                self._final_state = future_result
            else:
                return future_result

        _result = self._final_state.result(
            raise_on_failure=raise_on_failure, fetch=True
        )
        # state.result is a `sync_compatible` function that may or may not return an awaitable
        # depending on whether the parent frame is sync or not
        if inspect.isawaitable(_result):
            _result = run_coro_as_sync(_result)
        return _result

    def __del__(self):
        if self._final_state or self._wrapped_future.done():
            return
        try:
            local_logger = get_run_logger()
        except Exception:
            local_logger = logger
        local_logger.warning(
            "A future was garbage collected before it resolved."
            " Please call `.wait()` or `.result()` on futures to ensure they resolve.",
        )