prefect_ray.task_runners
Interface and implementations of the Ray Task Runner. Task Runners in Prefect are responsible for managing the execution of Prefect task runs. Generally speaking, users are not expected to interact with task runners outside of configuring and initializing them for a flow.
Example
import time
from prefect import flow, task
@task
def shout(number):
time.sleep(0.5)
print(f"#{number}")
@flow
def count_to(highest_number):
for number in range(highest_number):
shout.submit(number)
if __name__ == "__main__":
count_to(10)
# outputs
#0
#1
#2
#3
#4
#5
#6
#7
#8
#9
Switching to a RayTaskRunner
:
import time
from prefect import flow, task
from prefect_ray import RayTaskRunner
@task
def shout(number):
time.sleep(0.5)
print(f"#{number}")
@flow(task_runner=RayTaskRunner)
def count_to(highest_number):
for number in range(highest_number):
shout.submit(number)
if __name__ == "__main__":
count_to(10)
# outputs
#3
#7
#2
#6
#4
#0
#1
#5
#8
#9
RayTaskRunner
Bases: TaskRunner[PrefectRayFuture]
A parallel task_runner that submits tasks to ray
.
By default, a temporary Ray cluster is created for the duration of the flow run.
Alternatively, if you already have a ray
instance running, you can provide
the connection URL via the address
kwarg.
Args:
address (string, optional): Address of a currently running ray
instance; if
one is not provided, a temporary instance will be created.
init_kwargs (dict, optional): Additional kwargs to use when calling ray.init
.
Examples:
Using a temporary local ray cluster:
```python
from prefect import flow
from prefect_ray.task_runners import RayTaskRunner
@flow(task_runner=RayTaskRunner())
def my_flow():
...
```
Connecting to an existing ray instance:
```python
RayTaskRunner(address="ray://192.0.2.255:8786")
```
Source code in prefect_ray/task_runners.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
|
__eq__(other)
Check if an instance has the same settings as this task runner.
Source code in prefect_ray/task_runners.py
228 229 230 231 232 233 234 235 236 237 |
|
__exit__(*exc_info)
Shuts down the cluster.
Source code in prefect_ray/task_runners.py
424 425 426 427 428 429 430 |
|
duplicate()
Return a new instance of with the same settings as this one.
Source code in prefect_ray/task_runners.py
222 223 224 225 226 |
|