Skip to content

prefect_kubernetes.worker

Module containing the Kubernetes worker used for executing flow runs as Kubernetes jobs.

To start a Kubernetes worker, run the following command:

prefect worker start --pool 'my-work-pool' --type kubernetes

Replace my-work-pool with the name of the work pool you want the worker to poll for flow runs.

Securing your Prefect Cloud API key

If you are using Prefect Cloud and would like to pass your Prefect Cloud API key to created jobs via a Kubernetes secret, set the PREFECT_INTEGRATIONS_KUBERNETES_WORKER_CREATE_SECRET_FOR_API_KEY environment variable before starting your worker:

export PREFECT_INTEGRATIONS_KUBERNETES_WORKER_CREATE_SECRET_FOR_API_KEY="true"
prefect worker start --pool 'my-work-pool' --type kubernetes

Note that your work will need permission to create secrets in the same namespace(s) that Kubernetes jobs are created in to execute flow runs.

Using a custom Kubernetes job manifest template

The default template used for Kubernetes job manifests looks like this:

---
apiVersion: batch/v1
kind: Job
metadata:
labels: "{{ labels }}"
namespace: "{{ namespace }}"
generateName: "{{ name }}-"
spec:
ttlSecondsAfterFinished: "{{ finished_job_ttl }}"
template:
    spec:
    parallelism: 1
    completions: 1
    restartPolicy: Never
    serviceAccountName: "{{ service_account_name }}"
    containers:
    - name: prefect-job
        env: "{{ env }}"
        image: "{{ image }}"
        imagePullPolicy: "{{ image_pull_policy }}"
        args: "{{ command }}"

Each values enclosed in {{ }} is a placeholder that will be replaced with a value at runtime. The values that can be used a placeholders are defined by the variables schema defined in the base job template.

The default job manifest and available variables can be customized on a work pool by work pool basis. These customizations can be made via the Prefect UI when creating or editing a work pool.

For example, if you wanted to allow custom memory requests for a Kubernetes work pool you could update the job manifest template to look like this:

---
apiVersion: batch/v1
kind: Job
metadata:
labels: "{{ labels }}"
namespace: "{{ namespace }}"
generateName: "{{ name }}-"
spec:
ttlSecondsAfterFinished: "{{ finished_job_ttl }}"
template:
    spec:
    parallelism: 1
    completions: 1
    restartPolicy: Never
    serviceAccountName: "{{ service_account_name }}"
    containers:
    - name: prefect-job
        env: "{{ env }}"
        image: "{{ image }}"
        imagePullPolicy: "{{ image_pull_policy }}"
        args: "{{ command }}"
        resources:
            requests:
                memory: "{{ memory }}Mi"
            limits:
                memory: 128Mi

In this new template, the memory placeholder allows customization of the memory allocated to Kubernetes jobs created by workers in this work pool, but the limit is hard-coded and cannot be changed by deployments.

For more information about work pools and workers, checkout out the Prefect docs.

KubernetesImagePullPolicy

Bases: Enum

Enum representing the image pull policy options for a Kubernetes job.

Source code in prefect_kubernetes/worker.py
233
234
235
236
237
238
class KubernetesImagePullPolicy(enum.Enum):
    """Enum representing the image pull policy options for a Kubernetes job."""

    IF_NOT_PRESENT = "IfNotPresent"
    ALWAYS = "Always"
    NEVER = "Never"

KubernetesWorker

Bases: BaseWorker

Prefect worker that executes flow runs within Kubernetes Jobs.

Source code in prefect_kubernetes/worker.py
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
class KubernetesWorker(BaseWorker):
    """Prefect worker that executes flow runs within Kubernetes Jobs."""

    type: str = "kubernetes"
    job_configuration = KubernetesWorkerJobConfiguration
    job_configuration_variables = KubernetesWorkerVariables
    _description = (
        "Execute flow runs within jobs scheduled on a Kubernetes cluster. Requires a "
        "Kubernetes cluster."
    )
    _display_name = "Kubernetes"
    _documentation_url = "https://prefecthq.github.io/prefect-kubernetes/worker/"
    _logo_url = "https://cdn.sanity.io/images/3ugk85nk/production/2d0b896006ad463b49c28aaac14f31e00e32cfab-250x250.png"  # noqa

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._created_secrets = {}

    async def run(
        self,
        flow_run: "FlowRun",
        configuration: KubernetesWorkerJobConfiguration,
        task_status: Optional[anyio.abc.TaskStatus] = None,
    ) -> KubernetesWorkerResult:
        """
        Executes a flow run within a Kubernetes Job and waits for the flow run
        to complete.

        Args:
            flow_run: The flow run to execute
            configuration: The configuration to use when executing the flow run.
            task_status: The task status object for the current flow run. If provided,
                the task will be marked as started.

        Returns:
            KubernetesWorkerResult: A result object containing information about the
                final state of the flow run
        """
        logger = self.get_flow_run_logger(flow_run)
        async with self._get_configured_kubernetes_client(configuration) as client:
            logger.info("Creating Kubernetes job...")

            job = await self._create_job(configuration, client)

            pid = await self._get_infrastructure_pid(job, client)
            # Indicate that the job has started
            if task_status is not None:
                task_status.started(pid)

            # Monitor the job until completion
            events_replicator = KubernetesEventsReplicator(
                client=client,
                job_name=job.metadata.name,
                namespace=configuration.namespace,
                worker_resource=self._event_resource(),
                related_resources=self._event_related_resources(
                    configuration=configuration
                ),
                timeout_seconds=configuration.pod_watch_timeout_seconds,
            )
            async with events_replicator:
                status_code = await self._watch_job(
                    logger, job.metadata.name, configuration, client
                )

            return KubernetesWorkerResult(identifier=pid, status_code=status_code)

    async def teardown(self, *exc_info):
        await super().teardown(*exc_info)

        await self._clean_up_created_secrets()

    async def _clean_up_created_secrets(self):
        """Deletes any secrets created during the worker's operation."""
        for key, configuration in self._created_secrets.items():
            async with self._get_configured_kubernetes_client(configuration) as client:
                v1 = CoreV1Api(client)
                result = await v1.delete_namespaced_secret(
                    name=key[0],
                    namespace=key[1],
                )

                if isinstance(result, Exception):
                    self._logger.warning(
                        "Failed to delete created secret with exception: %s", result
                    )

    @asynccontextmanager
    async def _get_configured_kubernetes_client(
        self, configuration: KubernetesWorkerJobConfiguration
    ) -> AsyncGenerator["ApiClient", None]:
        """
        Returns a configured Kubernetes client.
        """
        client = None
        settings = KubernetesSettings()

        if configuration.cluster_config:
            config_dict = configuration.cluster_config.config
            context = configuration.cluster_config.context_name
            client = await config.new_client_from_config_dict(
                config_dict=config_dict,
                context=context,
            )
        else:
            # Try to load in-cluster configuration
            try:
                config.load_incluster_config()
                client = ApiClient()
            except config.ConfigException:
                # If in-cluster config fails, load the local kubeconfig
                client = await config.new_client_from_config()

        if settings.worker.add_tcp_keepalive:
            client.rest_client.pool_manager._request_class = KeepAliveClientRequest

        try:
            yield client
        finally:
            await client.close()

    async def _replace_api_key_with_secret(
        self,
        configuration: KubernetesWorkerJobConfiguration,
        client: "ApiClient",
        secret_name: Optional[str] = None,
    ):
        """Replaces the PREFECT_API_KEY environment variable with a Kubernetes secret"""
        manifest_env = configuration.job_manifest["spec"]["template"]["spec"][
            "containers"
        ][0].get("env")
        manifest_api_key_env = next(
            (
                env_entry
                for env_entry in manifest_env
                if env_entry.get("name") == "PREFECT_API_KEY"
            ),
            {},
        )
        api_key = manifest_api_key_env.get("value")
        if api_key and not secret_name:
            secret_name = f"prefect-{_slugify_name(self.name)}-api-key"
            secret = await self._upsert_secret(
                name=secret_name,
                value=api_key,
                namespace=configuration.namespace,
                client=client,
            )
            # Store configuration so that we can delete the secret when the worker shuts
            # down
            self._created_secrets[
                (secret.metadata.name, secret.metadata.namespace)
            ] = configuration
        if secret_name:
            new_api_env_entry = {
                "name": "PREFECT_API_KEY",
                "valueFrom": {"secretKeyRef": {"name": secret_name, "key": "value"}},
            }
            manifest_env = [
                entry if entry.get("name") != "PREFECT_API_KEY" else new_api_env_entry
                for entry in manifest_env
            ]
            configuration.job_manifest["spec"]["template"]["spec"]["containers"][0][
                "env"
            ] = manifest_env

    @retry(
        stop=stop_after_attempt(MAX_ATTEMPTS),
        wait=wait_fixed(RETRY_MIN_DELAY_SECONDS)
        + wait_random(
            RETRY_MIN_DELAY_JITTER_SECONDS,
            RETRY_MAX_DELAY_JITTER_SECONDS,
        ),
        reraise=True,
    )
    async def _create_job(
        self, configuration: KubernetesWorkerJobConfiguration, client: "ApiClient"
    ) -> "V1Job":
        """
        Creates a Kubernetes job from a job manifest.
        """
        settings = KubernetesSettings()
        if settings.worker.api_key_secret_name:
            await self._replace_api_key_with_secret(
                configuration=configuration,
                client=client,
                secret_name=settings.worker.api_key_secret_name,
            )
        elif settings.worker.create_secret_for_api_key:
            await self._replace_api_key_with_secret(
                configuration=configuration, client=client
            )

        try:
            batch_client = BatchV1Api(client)
            job = await batch_client.create_namespaced_job(
                configuration.namespace,
                configuration.job_manifest,
            )
        except kubernetes_asyncio.client.exceptions.ApiException as exc:
            # Parse the reason and message from the response if feasible
            message = ""
            if exc.reason:
                message += ": " + exc.reason
            if exc.body and "message" in (body := json.loads(exc.body)):
                message += ": " + body["message"]

            raise InfrastructureError(
                f"Unable to create Kubernetes job{message}"
            ) from exc

        return job

    async def _upsert_secret(
        self, name: str, value: str, namespace: str, client: "ApiClient"
    ):
        encoded_value = base64.b64encode(value.encode("utf-8")).decode("utf-8")
        core_client = CoreV1Api(client)
        try:
            # Get the current version of the Secret and update it with the
            # new value
            current_secret = await core_client.read_namespaced_secret(
                name=name, namespace=namespace
            )
            current_secret.data = {"value": encoded_value}
            secret = await core_client.replace_namespaced_secret(
                name=name, namespace=namespace, body=current_secret
            )
        except ApiException as exc:
            if exc.status != 404:
                raise
            # Create the secret if it doesn't already exist
            metadata = V1ObjectMeta(name=name, namespace=namespace)
            secret = V1Secret(
                api_version="v1",
                kind="Secret",
                metadata=metadata,
                data={"value": encoded_value},
            )
            secret = await core_client.create_namespaced_secret(
                namespace=namespace, body=secret
            )
        return secret

    @asynccontextmanager
    async def _get_batch_client(
        self, client: "ApiClient"
    ) -> AsyncGenerator["BatchV1Api", None]:
        """
        Context manager for retrieving a Kubernetes batch client.
        """
        try:
            yield BatchV1Api(api_client=client)
        finally:
            await client.close()

    async def _get_infrastructure_pid(self, job: "V1Job", client: "ApiClient") -> str:
        """
        Generates a Kubernetes infrastructure PID.

        The PID is in the format: "<cluster uid>:<namespace>:<job name>".
        """
        cluster_uid = await self._get_cluster_uid(client)
        pid = f"{cluster_uid}:{job.metadata.namespace}:{job.metadata.name}"
        return pid

    def _parse_infrastructure_pid(
        self, infrastructure_pid: str
    ) -> Tuple[str, str, str]:
        """
        Parse a Kubernetes infrastructure PID into its component parts.

        Returns a cluster UID, namespace, and job name.
        """
        cluster_uid, namespace, job_name = infrastructure_pid.split(":", 2)
        return cluster_uid, namespace, job_name

    async def _get_cluster_uid(self, client: "ApiClient") -> str:
        """
        Gets a unique id for the current cluster being used.

        There is no real unique identifier for a cluster. However, the `kube-system`
        namespace is immutable and has a persistence UID that we use instead.

        PREFECT_KUBERNETES_CLUSTER_UID can be set in cases where the `kube-system`
        namespace cannot be read e.g. when a cluster role cannot be created. If set,
        this variable will be used and we will not attempt to read the `kube-system`
        namespace.

        See https://github.com/kubernetes/kubernetes/issues/44954
        """
        settings = KubernetesSettings()
        # Default to an environment variable
        env_cluster_uid = settings.cluster_uid
        if env_cluster_uid:
            return env_cluster_uid

        # Read the UID from the cluster namespace
        v1 = CoreV1Api(client)
        namespace = await v1.read_namespace("kube-system")
        cluster_uid = namespace.metadata.uid
        return cluster_uid

    async def _stream_job_logs(
        self,
        logger: logging.Logger,
        pod_name: str,
        job_name: str,
        configuration: KubernetesWorkerJobConfiguration,
        client,
    ):
        timeout = aiohttp.ClientTimeout(total=None)
        core_client = CoreV1Api(client)

        logs = await core_client.read_namespaced_pod_log(
            pod_name,
            configuration.namespace,
            follow=True,
            _preload_content=False,
            container="prefect-job",
            _request_timeout=timeout,
        )
        try:
            async for line in logs.content:
                if not line:
                    break
                print(line.decode().rstrip())
        except Exception:
            logger.warning(
                (
                    "Error occurred while streaming logs - "
                    "Job will continue to run but logs will "
                    "no longer be streamed to stdout."
                ),
                exc_info=True,
            )

    async def _job_events(
        self,
        batch_client: BatchV1Api,
        job_name: str,
        namespace: str,
        watch_kwargs: dict,
    ):
        """
        Stream job events.

        Pick up from the current resource version returned by the API
        in the case of a 410.

        See https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes  # noqa
        """
        watch = kubernetes_asyncio.watch.Watch()
        resource_version = None
        async with watch:
            while True:
                try:
                    async for event in watch.stream(
                        func=batch_client.list_namespaced_job,
                        namespace=namespace,
                        field_selector=f"metadata.name={job_name}",
                        _request_timeout=aiohttp.ClientTimeout(),
                        **watch_kwargs,
                    ):
                        yield event
                except ApiException as e:
                    if e.status == 410:
                        job_list = await batch_client.list_namespaced_job(
                            namespace=namespace,
                            field_selector=f"metadata.name={job_name}",
                            _request_timeout=aiohttp.ClientTimeout(),
                        )

                        resource_version = job_list.metadata.resource_version
                        watch_kwargs["resource_version"] = resource_version
                    else:
                        raise

    async def _monitor_job_events(self, batch_client, job_name, logger, configuration):
        job = await batch_client.read_namespaced_job(
            name=job_name, namespace=configuration.namespace
        )
        completed = job.status.completion_time is not None
        watch_kwargs = (
            {"timeout_seconds": configuration.job_watch_timeout_seconds}
            if configuration.job_watch_timeout_seconds
            else {}
        )

        while not completed:
            async for event in self._job_events(
                batch_client,
                job_name,
                configuration.namespace,
                watch_kwargs,
            ):
                if event["type"] == "DELETED":
                    logger.error(f"Job {job_name!r}: Job has been deleted.")
                    completed = True
                elif event["object"].status.completion_time:
                    if not event["object"].status.succeeded:
                        # Job failed, exit while loop and return pod exit code
                        logger.error(f"Job {job_name!r}: Job failed.")
                    completed = True
                # Check if the job has reached its backoff limit
                # and stop watching if it has
                elif (
                    event["object"].spec.backoff_limit is not None
                    and event["object"].status.failed is not None
                    and event["object"].status.failed
                    > event["object"].spec.backoff_limit
                ):
                    logger.error(f"Job {job_name!r}: Job reached backoff limit.")
                    completed = True
                # If the job has no backoff limit, check if it has failed
                # and stop watching if it has
                elif (
                    not event["object"].spec.backoff_limit
                    and event["object"].status.failed
                ):
                    completed = True
                if completed:
                    break

    async def _watch_job(
        self,
        logger: logging.Logger,
        job_name: str,
        configuration: KubernetesWorkerJobConfiguration,
        client: "ApiClient",
    ) -> int:
        """
        Watch a job.

        Return the final status code of the first container.
        """

        logger.debug(f"Job {job_name!r}: Monitoring job...")

        job = await self._get_job(logger, job_name, configuration, client)
        if not job:
            return -1

        pod = await self._get_job_pod(logger, job_name, configuration, client)
        if not pod:
            return -1

        # Create a list of tasks to run concurrently
        async with self._get_batch_client(client) as batch_client:
            tasks = [
                self._monitor_job_events(
                    batch_client,
                    job_name,
                    logger,
                    configuration,
                )
            ]
            try:
                with timeout_async(seconds=configuration.job_watch_timeout_seconds):
                    if configuration.stream_output:
                        tasks.append(
                            self._stream_job_logs(
                                logger,
                                pod.metadata.name,
                                job_name,
                                configuration,
                                client,
                            )
                        )

                    results = await asyncio.gather(*tasks, return_exceptions=True)
                    if any(isinstance(result, Exception) for result in results):
                        for result in results:
                            if isinstance(result, Exception):
                                logger.error(
                                    f"Error during task execution: {result}",
                                    exc_info=True,
                                )
            except TimeoutError:
                logger.error(
                    f"Job {job_name!r}: Job did not complete within "
                    f"timeout of {configuration.job_watch_timeout_seconds}s."
                )
                return -1

            core_client = CoreV1Api(client)
            # Get all pods for the job
            pods = await core_client.list_namespaced_pod(
                namespace=configuration.namespace, label_selector=f"job-name={job_name}"
            )
            # Get the status for only the most recently used pod
            pods.items.sort(
                key=lambda pod: pod.metadata.creation_timestamp, reverse=True
            )
            most_recent_pod = pods.items[0] if pods.items else None
            first_container_status = (
                most_recent_pod.status.container_statuses[0]
                if most_recent_pod
                else None
            )

        if not first_container_status:
            logger.error(f"Job {job_name!r}: No pods found for job.")
            return -1

        # In some cases, the pod will still be running at this point.
        # We can assume that the job is still running and return 0 to prevent marking the flow run as crashed
        elif first_container_status.state and (
            first_container_status.state.running is not None
            or first_container_status.state.waiting is not None
        ):
            logger.warning(
                f"The worker's watch for job {job_name!r} has exited early. Check the logs for more information."
                " The job is still running, but the worker will not wait for it to complete."
            )
            # Return 0 to prevent marking the flow run as crashed
            return 0

        # In some cases, such as spot instance evictions, the pod will be forcibly
        # terminated and not report a status correctly.
        elif (
            first_container_status.state is None
            or first_container_status.state.terminated is None
            or first_container_status.state.terminated.exit_code is None
        ):
            logger.error(
                f"Could not determine exit code for {job_name!r}."
                "Exit code will be reported as -1."
                f"First container status info did not report an exit code."
                f"First container info: {first_container_status}."
            )
            return -1

        return first_container_status.state.terminated.exit_code

    async def _get_job(
        self,
        logger: logging.Logger,
        job_id: str,
        configuration: KubernetesWorkerJobConfiguration,
        client: "ApiClient",
    ) -> Optional["V1Job"]:
        """Get a Kubernetes job by id."""

        try:
            batch_client = BatchV1Api(client)
            job = await batch_client.read_namespaced_job(
                name=job_id, namespace=configuration.namespace
            )
        except kubernetes_asyncio.client.exceptions.ApiException:
            logger.error(f"Job {job_id!r} was removed.", exc_info=True)
            return None
        return job

    async def _get_job_pod(
        self,
        logger: logging.Logger,
        job_name: str,
        configuration: KubernetesWorkerJobConfiguration,
        client: "ApiClient",
    ) -> Optional["V1Pod"]:
        """Get the first running pod for a job."""

        watch = kubernetes_asyncio.watch.Watch()
        logger.info(f"Job {job_name!r}: Starting watch for pod start...")
        last_phase = None
        last_pod_name: Optional[str] = None
        core_client = CoreV1Api(client)
        async with watch:
            async for event in watch.stream(
                func=core_client.list_namespaced_pod,
                namespace=configuration.namespace,
                label_selector=f"job-name={job_name}",
                timeout_seconds=configuration.pod_watch_timeout_seconds,
                _request_timeout=aiohttp.ClientTimeout(),
            ):
                pod: V1Pod = event["object"]
                last_pod_name = pod.metadata.name
                logger.info(f"Job {job_name!r}: Pod {last_pod_name!r} has started.")
                phase = pod.status.phase
                if phase != last_phase:
                    logger.info(f"Job {job_name!r}: Pod has status {phase!r}.")

                if phase != "Pending":
                    return pod

                last_phase = phase
            # If we've gotten here, we never found the Pod that was created for the flow run
            # Job, so let's inspect the situation and log what we can find.  It's possible
            # that the Job ran into scheduling constraints it couldn't satisfy, like
            # memory/CPU requests, or a volume that wasn't available, or a node with an
            # available GPU.
            logger.error(f"Job {job_name!r}: Pod never started.")
            await self._log_recent_events(
                logger, job_name, last_pod_name, configuration, client
            )

    async def _log_recent_events(
        self,
        logger: logging.Logger,
        job_name: str,
        pod_name: Optional[str],
        configuration: KubernetesWorkerJobConfiguration,
        client: "ApiClient",
    ) -> None:
        """Look for reasons why a Job may not have been able to schedule a Pod, or why
        a Pod may not have been able to start and log them to the provided logger."""

        def best_event_time(event: CoreV1Event) -> datetime:
            """Choose the best timestamp from a Kubernetes event"""
            return event.event_time or event.last_timestamp

        def log_event(event: CoreV1Event):
            """Log an event in one of a few formats to the provided logger"""
            if event.count and event.count > 1:
                logger.info(
                    "%s event %r (%s times) at %s: %s",
                    event.involved_object.kind,
                    event.reason,
                    event.count,
                    best_event_time(event),
                    event.message,
                )
            else:
                logger.info(
                    "%s event %r at %s: %s",
                    event.involved_object.kind,
                    event.reason,
                    best_event_time(event),
                    event.message,
                )

        core_client = CoreV1Api(client)

        events: CoreV1EventList = await core_client.list_namespaced_event(
            configuration.namespace
        )

        event: CoreV1Event
        for event in sorted(events.items, key=best_event_time):
            if (
                event.involved_object.api_version == "batch/v1"
                and event.involved_object.kind == "Job"
                and event.involved_object.namespace == configuration.namespace
                and event.involved_object.name == job_name
            ):
                log_event(event)

            if (
                pod_name
                and event.involved_object.api_version == "v1"
                and event.involved_object.kind == "Pod"
                and event.involved_object.namespace == configuration.namespace
                and event.involved_object.name == pod_name
            ):
                log_event(event)

run(flow_run, configuration, task_status=None) async

Executes a flow run within a Kubernetes Job and waits for the flow run to complete.

Parameters:

Name Type Description Default
flow_run FlowRun

The flow run to execute

required
configuration KubernetesWorkerJobConfiguration

The configuration to use when executing the flow run.

required
task_status Optional[TaskStatus]

The task status object for the current flow run. If provided, the task will be marked as started.

None

Returns:

Name Type Description
KubernetesWorkerResult KubernetesWorkerResult

A result object containing information about the final state of the flow run

Source code in prefect_kubernetes/worker.py
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
async def run(
    self,
    flow_run: "FlowRun",
    configuration: KubernetesWorkerJobConfiguration,
    task_status: Optional[anyio.abc.TaskStatus] = None,
) -> KubernetesWorkerResult:
    """
    Executes a flow run within a Kubernetes Job and waits for the flow run
    to complete.

    Args:
        flow_run: The flow run to execute
        configuration: The configuration to use when executing the flow run.
        task_status: The task status object for the current flow run. If provided,
            the task will be marked as started.

    Returns:
        KubernetesWorkerResult: A result object containing information about the
            final state of the flow run
    """
    logger = self.get_flow_run_logger(flow_run)
    async with self._get_configured_kubernetes_client(configuration) as client:
        logger.info("Creating Kubernetes job...")

        job = await self._create_job(configuration, client)

        pid = await self._get_infrastructure_pid(job, client)
        # Indicate that the job has started
        if task_status is not None:
            task_status.started(pid)

        # Monitor the job until completion
        events_replicator = KubernetesEventsReplicator(
            client=client,
            job_name=job.metadata.name,
            namespace=configuration.namespace,
            worker_resource=self._event_resource(),
            related_resources=self._event_related_resources(
                configuration=configuration
            ),
            timeout_seconds=configuration.pod_watch_timeout_seconds,
        )
        async with events_replicator:
            status_code = await self._watch_job(
                logger, job.metadata.name, configuration, client
            )

        return KubernetesWorkerResult(identifier=pid, status_code=status_code)

KubernetesWorkerJobConfiguration

Bases: BaseJobConfiguration

Configuration class used by the Kubernetes worker.

An instance of this class is passed to the Kubernetes worker's run method for each flow run. It contains all of the information necessary to execute the flow run as a Kubernetes job.

Attributes:

Name Type Description
name

The name to give to created Kubernetes job.

command

The command executed in created Kubernetes jobs to kick off flow run execution.

env Union[Dict[str, Optional[str]], List[Dict[str, Any]]]

The environment variables to set in created Kubernetes jobs.

labels Union[Dict[str, Optional[str]], List[Dict[str, Any]]]

The labels to set on created Kubernetes jobs.

namespace str

The Kubernetes namespace to create Kubernetes jobs in.

job_manifest Dict[str, Any]

The Kubernetes job manifest to use to create Kubernetes jobs.

cluster_config Optional[KubernetesClusterConfig]

The Kubernetes cluster configuration to use for authentication to a Kubernetes cluster.

job_watch_timeout_seconds Optional[int]

The number of seconds to wait for the job to complete before timing out. If None, the worker will wait indefinitely.

pod_watch_timeout_seconds int

The number of seconds to wait for the pod to complete before timing out.

stream_output bool

Whether or not to stream the job's output.

Source code in prefect_kubernetes/worker.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
class KubernetesWorkerJobConfiguration(BaseJobConfiguration):
    """
    Configuration class used by the Kubernetes worker.

    An instance of this class is passed to the Kubernetes worker's `run` method
    for each flow run. It contains all of the information necessary to execute
    the flow run as a Kubernetes job.

    Attributes:
        name: The name to give to created Kubernetes job.
        command: The command executed in created Kubernetes jobs to kick off
            flow run execution.
        env: The environment variables to set in created Kubernetes jobs.
        labels: The labels to set on created Kubernetes jobs.
        namespace: The Kubernetes namespace to create Kubernetes jobs in.
        job_manifest: The Kubernetes job manifest to use to create Kubernetes jobs.
        cluster_config: The Kubernetes cluster configuration to use for authentication
            to a Kubernetes cluster.
        job_watch_timeout_seconds: The number of seconds to wait for the job to
            complete before timing out. If `None`, the worker will wait indefinitely.
        pod_watch_timeout_seconds: The number of seconds to wait for the pod to
            complete before timing out.
        stream_output: Whether or not to stream the job's output.
    """

    namespace: str = Field(default="default")
    job_manifest: Dict[str, Any] = Field(
        json_schema_extra=dict(template=_get_default_job_manifest_template())
    )
    cluster_config: Optional[KubernetesClusterConfig] = Field(default=None)
    job_watch_timeout_seconds: Optional[int] = Field(default=None)
    pod_watch_timeout_seconds: int = Field(default=60)
    stream_output: bool = Field(default=True)

    env: Union[Dict[str, Optional[str]], List[Dict[str, Any]]] = Field(
        default_factory=dict
    )

    # internal-use only
    _api_dns_name: Optional[str] = None  # Replaces 'localhost' in API URL

    @model_validator(mode="after")
    def _validate_job_manifest(self) -> Self:
        """
        Validates the job manifest by ensuring the presence of required fields
        and checking for compatible values.
        """
        job_manifest = self.job_manifest
        # Ensure metadata is present
        if "metadata" not in job_manifest:
            job_manifest["metadata"] = {}

        # Ensure labels is present in metadata
        if "labels" not in job_manifest["metadata"]:
            job_manifest["metadata"]["labels"] = {}

        # Ensure namespace is present in metadata
        if "namespace" not in job_manifest["metadata"]:
            job_manifest["metadata"]["namespace"] = self.namespace

        # Check if job includes all required components
        patch = JsonPatch.from_diff(job_manifest, _get_base_job_manifest())
        missing_paths = sorted([op["path"] for op in patch if op["op"] == "add"])
        if missing_paths:
            raise ValueError(
                "Job is missing required attributes at the following paths: "
                f"{', '.join(missing_paths)}"
            )

        # Check if job has compatible values
        incompatible = sorted(
            [
                f"{op['path']} must have value {op['value']!r}"
                for op in patch
                if op["op"] == "replace"
            ]
        )
        if incompatible:
            raise ValueError(
                "Job has incompatible values for the following attributes: "
                f"{', '.join(incompatible)}"
            )

        return self

    @field_validator("env", mode="before")
    @classmethod
    def _coerce_env(cls, v):
        if isinstance(v, list):
            return v
        return {k: str(v) if v is not None else None for k, v in v.items()}

    @staticmethod
    def _base_flow_run_labels(flow_run: "FlowRun") -> Dict[str, str]:
        """
        Generate a dictionary of labels for a flow run job.
        """
        return {
            "prefect.io/flow-run-id": str(flow_run.id),
            "prefect.io/flow-run-name": flow_run.name,
            "prefect.io/version": _slugify_label_value(
                prefect.__version__.split("+")[0]
            ),
        }

    def prepare_for_flow_run(
        self,
        flow_run: "FlowRun",
        deployment: Optional["DeploymentResponse"] = None,
        flow: Optional["Flow"] = None,
    ):
        """
        Prepares the job configuration for a flow run.

        Ensures that necessary values are present in the job manifest and that the
        job manifest is valid.

        Args:
            flow_run: The flow run to prepare the job configuration for
            deployment: The deployment associated with the flow run used for
                preparation.
            flow: The flow associated with the flow run used for preparation.
        """

        super().prepare_for_flow_run(flow_run, deployment, flow)
        # Update configuration env and job manifest env
        self._update_prefect_api_url_if_local_server()
        self._populate_env_in_manifest()
        # Update labels in job manifest
        self._slugify_labels()
        # Add defaults to job manifest if necessary
        self._populate_image_if_not_present()
        self._populate_command_if_not_present()
        self._populate_generate_name_if_not_present()

    def _populate_env_in_manifest(self):
        """
        Populates environment variables in the job manifest.

        When `env` is templated as a variable in the job manifest it comes in as a
        dictionary. We need to convert it to a list of dictionaries to conform to the
        Kubernetes job manifest schema.

        This function also handles the case where the user has removed the `{{ env }}`
        placeholder and hard coded a value for `env`. In this case, we need to prepend
        our environment variables to the list to ensure Prefect setting propagation.
        An example reason the a user would remove the `{{ env }}` placeholder to
        hardcode Kubernetes secrets in the base job template.
        """
        transformed_env = [{"name": k, "value": v} for k, v in self.env.items()]

        template_env = self.job_manifest["spec"]["template"]["spec"]["containers"][
            0
        ].get("env")

        # If user has removed `{{ env }}` placeholder and hard coded a value for `env`,
        # we need to prepend our environment variables to the list to ensure Prefect
        # setting propagation.
        if isinstance(template_env, list):
            self.job_manifest["spec"]["template"]["spec"]["containers"][0]["env"] = [
                *transformed_env,
                *template_env,
            ]
        # Current templating adds `env` as a dict when the kubernetes manifest requires
        # a list of dicts. Might be able to improve this in the future with a better
        # default `env` value and better typing.
        else:
            self.job_manifest["spec"]["template"]["spec"]["containers"][0][
                "env"
            ] = transformed_env

    def _update_prefect_api_url_if_local_server(self):
        """If the API URL has been set by the base environment rather than the by the
        user, update the value to ensure connectivity when using a bridge network by
        updating local connections to use the internal host
        """
        if self.env.get("PREFECT_API_URL") and self._api_dns_name:
            self.env["PREFECT_API_URL"] = (
                self.env["PREFECT_API_URL"]
                .replace("localhost", self._api_dns_name)
                .replace("127.0.0.1", self._api_dns_name)
            )

    def _slugify_labels(self):
        """Slugifies the labels in the job manifest."""
        all_labels = {**self.job_manifest["metadata"].get("labels", {}), **self.labels}
        self.job_manifest["metadata"]["labels"] = {
            _slugify_label_key(k): _slugify_label_value(v)
            for k, v in all_labels.items()
        }

    def _populate_image_if_not_present(self):
        """Ensures that the image is present in the job manifest. Populates the image
        with the default Prefect image if it is not present."""
        try:
            if (
                "image"
                not in self.job_manifest["spec"]["template"]["spec"]["containers"][0]
            ):
                self.job_manifest["spec"]["template"]["spec"]["containers"][0][
                    "image"
                ] = get_prefect_image_name()
        except KeyError:
            raise ValueError(
                "Unable to verify image due to invalid job manifest template."
            )

    def _populate_command_if_not_present(self):
        """
        Ensures that the command is present in the job manifest. Populates the command
        with the `prefect -m prefect.engine` if a command is not present.
        """
        try:
            command = self.job_manifest["spec"]["template"]["spec"]["containers"][
                0
            ].get("args")
            if command is None:
                self.job_manifest["spec"]["template"]["spec"]["containers"][0][
                    "args"
                ] = shlex.split(self._base_flow_run_command())
            elif isinstance(command, str):
                self.job_manifest["spec"]["template"]["spec"]["containers"][0][
                    "args"
                ] = shlex.split(command)
            elif not isinstance(command, list):
                raise ValueError(
                    "Invalid job manifest template: 'command' must be a string or list."
                )
        except KeyError:
            raise ValueError(
                "Unable to verify command due to invalid job manifest template."
            )

    def _populate_generate_name_if_not_present(self):
        """Ensures that the generateName is present in the job manifest."""
        manifest_generate_name = self.job_manifest["metadata"].get("generateName", "")
        has_placeholder = len(find_placeholders(manifest_generate_name)) > 0
        # if name wasn't present during template rendering, generateName will be
        # just a hyphen

        manifest_generate_name_templated_with_empty_string = (
            manifest_generate_name == "-"
        )
        if (
            not manifest_generate_name
            or has_placeholder
            or manifest_generate_name_templated_with_empty_string
            or manifest_generate_name == "None-"
        ):
            generate_name = None
            if self.name:
                generate_name = _slugify_name(self.name)
            # _slugify_name will return None if the slugified name in an exception
            if not generate_name:
                generate_name = "prefect-job"
            self.job_manifest["metadata"]["generateName"] = f"{generate_name}-"

prepare_for_flow_run(flow_run, deployment=None, flow=None)

Prepares the job configuration for a flow run.

Ensures that necessary values are present in the job manifest and that the job manifest is valid.

Parameters:

Name Type Description Default
flow_run FlowRun

The flow run to prepare the job configuration for

required
deployment Optional[DeploymentResponse]

The deployment associated with the flow run used for preparation.

None
flow Optional[Flow]

The flow associated with the flow run used for preparation.

None
Source code in prefect_kubernetes/worker.py
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def prepare_for_flow_run(
    self,
    flow_run: "FlowRun",
    deployment: Optional["DeploymentResponse"] = None,
    flow: Optional["Flow"] = None,
):
    """
    Prepares the job configuration for a flow run.

    Ensures that necessary values are present in the job manifest and that the
    job manifest is valid.

    Args:
        flow_run: The flow run to prepare the job configuration for
        deployment: The deployment associated with the flow run used for
            preparation.
        flow: The flow associated with the flow run used for preparation.
    """

    super().prepare_for_flow_run(flow_run, deployment, flow)
    # Update configuration env and job manifest env
    self._update_prefect_api_url_if_local_server()
    self._populate_env_in_manifest()
    # Update labels in job manifest
    self._slugify_labels()
    # Add defaults to job manifest if necessary
    self._populate_image_if_not_present()
    self._populate_command_if_not_present()
    self._populate_generate_name_if_not_present()

KubernetesWorkerResult

Bases: BaseWorkerResult

Contains information about the final state of a completed process

Source code in prefect_kubernetes/worker.py
554
555
class KubernetesWorkerResult(BaseWorkerResult):
    """Contains information about the final state of a completed process"""

KubernetesWorkerVariables

Bases: BaseVariables

Default variables for the Kubernetes worker.

The schema for this class is used to populate the variables section of the default base job template.

Source code in prefect_kubernetes/worker.py
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
class KubernetesWorkerVariables(BaseVariables):
    """
    Default variables for the Kubernetes worker.

    The schema for this class is used to populate the `variables` section of the default
    base job template.
    """

    namespace: str = Field(
        default="default", description="The Kubernetes namespace to create jobs within."
    )
    image: Optional[str] = Field(
        default=None,
        description="The image reference of a container image to use for created jobs. "
        "If not set, the latest Prefect image will be used.",
        examples=["docker.io/prefecthq/prefect:3-latest"],
    )
    service_account_name: Optional[str] = Field(
        default=None,
        description="The Kubernetes service account to use for job creation.",
    )
    image_pull_policy: Literal["IfNotPresent", "Always", "Never"] = Field(
        default=KubernetesImagePullPolicy.IF_NOT_PRESENT,
        description="The Kubernetes image pull policy to use for job containers.",
    )
    finished_job_ttl: Optional[int] = Field(
        default=None,
        title="Finished Job TTL",
        description="The number of seconds to retain jobs after completion. If set, "
        "finished jobs will be cleaned up by Kubernetes after the given delay. If not "
        "set, jobs will be retained indefinitely.",
    )
    job_watch_timeout_seconds: Optional[int] = Field(
        default=None,
        description=(
            "Number of seconds to wait for each event emitted by a job before "
            "timing out. If not set, the worker will wait for each event indefinitely."
        ),
    )
    pod_watch_timeout_seconds: int = Field(
        default=60,
        description="Number of seconds to watch for pod creation before timing out.",
    )
    stream_output: bool = Field(
        default=True,
        description=(
            "If set, output will be streamed from the job to local standard output."
        ),
    )
    cluster_config: Optional[KubernetesClusterConfig] = Field(
        default=None,
        description="The Kubernetes cluster config to use for job creation.",
    )